SKlearn | 学习总结

Posted ykit

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SKlearn | 学习总结相关的知识,希望对你有一定的参考价值。

1 简介

scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法
 
SKlearn官网:http://scikit-learn.org/stable/index.html
 

2 SKlearn 常用模块

sklearn中常用的模块有预处理、分类、回归、聚类、降维、模型选择。

 

预处理(Preprocessing):特征提取和归一化

常用的模块有:preprocessing,feature extraction

常见的应用有:把输入数据(如文本)转换为机器学习算法可用的数据。

 

分类(Classification):识别某个对象属于哪个类别

常用的算法有:SVM(支持向量机)、nearest neighbors(最近邻)、random forest(随机森林)

常见的应用有:垃圾邮件识别、图像识别。

 

回归(Regression):预测与对象相关联的连续值属性

常见的算法有:SVR(支持向量机)、 ridge regression(岭回归)、Lasso

常见的应用有:药物反应,预测股价。

 

聚类(Clustering):将相似对象自动分组

常用的算法有:k-Means、 spectral clustering、mean-shift

常见的应用有:客户细分,分组实验结果。

 

降维(Dimensionality Reduction):减少要考虑的随机变量的数量

常见的算法有:PCA(主成分分析)、feature selection(特征选择)、non-negative matrix factorization(非负矩阵分解)

常见的应用有:可视化,提高效率。

 

模型选择(Model Selection):比较,验证,选择参数和模型

常用的模块有:grid search(网格搜索)、cross validation(交叉验证)、 metrics(度量)

它的目标是通过参数调整提高精度。

 

附:算法选择路径

 
技术图片
 
 
 
 
 
——————————————————
本文仅用于学习
内容来自 https://www.jianshu.com/p/4e11af8d7c78

以上是关于SKlearn | 学习总结的主要内容,如果未能解决你的问题,请参考以下文章

机器学习实战基础(十六):sklearn中的数据预处理和特征工程特征选择 之 Filter过滤法 总结

机器学习实战基础(十六):sklearn中的数据预处理和特征工程特征选择 之 Filter过滤法 总结

Sklearn 监督学习

sklearn学习汇总

sklearn KMeans聚类算法(总结)

用scikit-learn学习主成分分析(PCA)