[LintCode] 1835. Number of Ways to Stay in the Same Place After Some Steps I
Posted xuanlu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LintCode] 1835. Number of Ways to Stay in the Same Place After Some Steps I相关的知识,希望对你有一定的参考价值。
You have a pointer at index 00 in an array of size arrLenarrLen. At each step, you can move 11 position to the left, 11 position to the right in the array or stay in the same place (The pointer should not be placed outside the array at any time).
Given two integers stepssteps and arrLenarrLen, return the number of ways such that your pointer still at index 00 after exactly stepssteps steps.
Since the answer may be too large, return it modulo 10^9 + 710?9??+7.
Example
Example 1:
Input: 3 2 Output: 4 Explanation: There are 4 differents ways to stay at index 0 after 3 steps. Right, Left, Stay Stay, Right, Left Right, Stay, Left Stay, Stay, Stay
public class Solution { /** * @param steps: steps you can move * @param arrLen: the length of the array * @return: Number of Ways to Stay in the Same Place After Some Steps */ public int numWays(int steps, int arrLen) { // write your code here return helper(steps, arrLen, 0); } private int helper(int steps, int arrLen, int curPos) { if (curPos < 0 || curPos >= arrLen) { return 0; } if (steps == 0) { if (curPos == 0) { return 1; } return 0; } int lStep = helper(steps - 1, arrLen, curPos - 1); int rStep = helper(steps - 1, arrLen, curPos + 1); int sStep = helper(steps - 1, arrLen, curPos); return lStep + rStep + sStep; } }
以上是关于[LintCode] 1835. Number of Ways to Stay in the Same Place After Some Steps I的主要内容,如果未能解决你的问题,请参考以下文章
Lintcode: Interval Minimum Number