ROS Gazebo使用解析
Posted flyinggod
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ROS Gazebo使用解析相关的知识,希望对你有一定的参考价值。
Gazebo是ROS中的一个实现物理仿真的工具包,gazebo本身就是一款机器人的仿真软件,基于ODE的物理引擎,可以模拟机器人以及环境中的很多物理特性。
类似于rviz工具,在gazebo工具中也可以加载机器人模型。
加载的步骤:
- 安装gazebo工具包
- 新建工程,将包的路径位置加入到环境变量ROS_PACKAGE_PATH中
- 新建.xacro文件并编辑内容
- 新建.world文件并编辑内容
- 新建.launch文件并编辑内容
- 显示模型及其参数
其中.xacro文件包括机器人模型信息的文件,.world是gazebo环境地图文件,.launch为启动脚本。
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/
上述指令可以临时将包的路径位置加入到环境变量ROS_PACKAGE_PATH中
安装gazebo工具包
sudo apt-get install ros-indigo-gazebo-ros-pkgs ros-indigo-gazebo-roscontrol
安装成功后,运行测试
rosrun gazebo_ros gazebo
新建工程,将包的路径位置加入到环境变量ROS_PACKAGE_PATH中
roscreate-pkg gazebo_test urdf xacro
- 增加环境变量
export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:/your_path/gazebo_test
新建.xacro文件并编辑内容
- 新建文件夹urdf
mkdir -p gazebo_test/urdf
- 在urdf文件夹下编辑robot1.xacro文件如下
<?xml version="1.0"?> <robot xmlns:xacro="http://www.ros.org/wiki/xacro" xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#sensor" xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema/#controller" xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/#interface" name="robot1"> <xacro:property name="length_wheel" value="0.05" /> <xacro:property name="radius_wheel" value="0.05" /> <xacro:macro name="default_inertial" params="mass"> <inertial> <mass value="${mass}" /> <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0" /> </inertial> </xacro:macro> <link name="base_footprint"> <visual> <geometry> <box size="0.001 0.001 0.001"/> </geometry> <origin rpy="0 0 0" xyz="0 0 0"/> </visual> <xacro:default_inertial mass="0.0001"/> </link> <gazebo reference="base_footprint"> <material>Gazebo/Green</material> <turnGravityOff>false</turnGravityOff> </gazebo> <joint name="base_footprint_joint" type="fixed"> <origin xyz="0 0 0" /> <parent link="base_footprint" /> <child link="base_link" /> </joint> <link name="base_link"> <visual> <geometry> <box size="0.2 .3 .1"/> </geometry> <origin rpy="0 0 1.54" xyz="0 0 0.05"/> <material name="white"> <color rgba="1 1 1 1"/> </material> </visual> <collision> <geometry> <box size="0.2 .3 0.1"/> </geometry> </collision> <xacro:default_inertial mass="10"/> </link> <link name="wheel_1"> <visual> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> <!-- <origin rpy="0 1.5 0" xyz="0.1 0.1 0"/> --> <origin rpy="0 0 0" xyz="0 0 0"/> <material name="black"> <color rgba="0 0 0 1"/> </material> </visual> <collision> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> </collision> <xacro:default_inertial mass="1"/> </link> <link name="wheel_2"> <visual> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> <!-- <origin rpy="0 1.5 0" xyz="-0.1 0.1 0"/> --> <origin rpy="0 0 0" xyz="0 0 0"/> <material name="black"/> </visual> <collision> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> </collision> <xacro:default_inertial mass="1"/> </link> <link name="wheel_3"> <visual> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> <!-- <origin rpy="0 1.5 0" xyz="0.1 -0.1 0"/> --> <origin rpy="0 0 0" xyz="0 0 0"/> <material name="black"/> </visual> <collision> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> </collision> <xacro:default_inertial mass="1"/> </link> <link name="wheel_4"> <visual> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> <!-- <origin rpy="0 1.5 0" xyz="-0.1 -0.1 0"/> --> <origin rpy="0 0 0" xyz="0 0 0" /> <material name="black"/> </visual> <collision> <geometry> <cylinder length="${length_wheel}" radius="${radius_wheel}"/> </geometry> </collision> <xacro:default_inertial mass="1"/> </link> <joint name="base_to_wheel1" type="continuous"> <parent link="base_link"/> <child link="wheel_1"/> <origin rpy="1.5707 0 0" xyz="0.1 0.15 0"/> <axis xyz="0 0 1" /> </joint> <joint name="base_to_wheel2" type="continuous"> <axis xyz="0 0 1" /> <anchor xyz="0 0 0" /> <limit effort="100" velocity="100" /> <parent link="base_link"/> <child link="wheel_2"/> <origin rpy="1.5707 0 0" xyz="-0.1 0.15 0"/> </joint> <joint name="base_to_wheel3" type="continuous"> <parent link="base_link"/> <axis xyz="0 0 1" /> <child link="wheel_3"/> <origin rpy="1.5707 0 0" xyz="0.1 -0.15 0"/> </joint> <joint name="base_to_wheel4" type="continuous"> <parent link="base_link"/> <axis xyz="0 0 1" /> <child link="wheel_4"/> <origin rpy="1.5707 0 0" xyz="-0.1 -0.15 0"/> </joint> </robot>
新建.world文件并编辑内容
- 新建文件夹worlds
mkdir -p gazebo_test/worlds
- worlds 文件夹下新建并编辑robot.world文件
<?xml version="1.0" ?> <sdf version="1.4"> <!-- We use a custom world for the rrbot so that the camera angle is launched correctly --> <world name="default"> <include> <uri>model://ground_plane</uri> </include> <!-- Global light source --> <include> <uri>model://sun</uri> </include> <!-- Focus camera on tall pendulum --> <gui fullscreen=‘0‘> <camera name=‘user_camera‘> <pose>4.927360 -4.376610 3.740080 0.000000 0.275643 2.356190</pose> <view_controller>orbit</view_controller> </camera> </gui> </world> </sdf>
world文件的参数就是配置些灯光视角参数
新建.launch文件并编辑内容
- 新建lauch文件夹并新建gazebo.lauch如下
<?xml version="1.0"?> <launch> <!-- these are the arguments you can pass this launch file, for example paused:=true --> <arg name="paused" default="true"/> <arg name="use_sim_time" default="false"/> <arg name="gui" default="true"/> <arg name="headless" default="false"/> <arg name="debug" default="true"/> <!-- We resume the logic in empty_world.launch, changing only the name of the world to be launched --> <include file="$(find gazebo_ros)/launch/empty_world.launch"> <arg name="world_name" value="$(find gazebo_test)/worlds/robot.world"/> <arg name="debug" value="$(arg debug)" /> <arg name="gui" value="$(arg gui)" /> <arg name="paused" value="$(arg paused)"/> <arg name="use_sim_time" value="$(arg use_sim_time)"/> <arg name="headless" value="$(arg headless)"/> </include> <!-- Load the URDF into the ROS Parameter Server --> <arg name="model" /> <param name="robot_description" command="$(find xacro)/xacro.py $(arg model)" /> <!-- Run a python script to the send a service call to gazebo_ros to spawn a URDF robot --> <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen" args="-urdf -model robot1 -param robot_description -z 0.05"/> </launch>
注意着行代表表示加载的.world文件位置,(find gazebo_test)返回的是包的绝对路径。
<arg name="world_name" value="$(find gazebo_test)/worlds/robot.world"/>
显示效果
roslaunch gazebo_test gazebo.launch model:="$(rospack find gazebo_test)/urdf/robot1.xacro" //或者使用绝对路径命令 roslaunch gazebo_test gazebo.launch model:="your_workspace/gazebo_test/urdf/robot1.xacro"
以上是关于ROS Gazebo使用解析的主要内容,如果未能解决你的问题,请参考以下文章