杜教BM(解决线性递推式的模板)
Posted caijiaming
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了杜教BM(解决线性递推式的模板)相关的知识,希望对你有一定的参考价值。
前提:公式必须是线性的,前几项越多越好,一般不低于8项,不然推出来不准确。
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long long ll; typedef vector<int> VI; const int maxn = 10005; const ll mod = 1e9 + 7; const int INF = 0x3f3f3f3f; const double eps = 1e-9; ll fast_mod(ll a, ll n, ll Mod) { ll ans = 1; a %= Mod; while (n) { if (n & 1) ans = (ans * a) % Mod; a = (a * a) % Mod; n >>= 1; } return ans; } namespace linear_seq { ll res[maxn], base[maxn], num[maxn], md[maxn]; //数组大小约10000 vector<int> vec; void mul(ll *a, ll *b, int k) { for (int i = 0; i < 2 * k; i++) num[i] = 0; for (int i = 0; i < k; i++) { if (a[i]) for (int j = 0; j < k; j++) num[i + j] = (num[i + j] + a[i] * b[j]) % mod; } for (int i = 2 * k - 1; i >= k; i--) { if (num[i]) for (int j = 0; j < vec.size(); j++) num[i - k + vec[j]] = (num[i - k + vec[j]] - num[i] * md[vec[j]]) % mod; } for (int i = 0; i < k; i++) a[i] = num[i]; } ll solve(ll n, VI a, VI b) { ll ans = 0, cnt = 0; int k = a.size(); assert(a.size() == b.size()); for (int i = 0; i < k; i++) md[k - 1 - i] = -a[i]; md[k] = 1; vec.clear(); for (int i = 0; i < k; i++) if (md[i]) vec.push_back(i); for (int i = 0; i < k; i++) res[i] = base[i] = 0; res[0] = 1; while ((1LL << cnt) <= n) cnt++; for (int p = cnt; p >= 0; p--) { mul(res, res, k); if ((n >> p) & 1) { for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0; for (int j = 0; j < vec.size(); j++) res[vec[j]] = (res[vec[j]] - res[k] * md[vec[j]]) % mod; } } for (int i = 0; i < k; i++) ans = (ans + res[i] * b[i]) % mod; if (ans < 0) ans += mod; return ans; } VI BM(VI s) { VI B(1, 1), C(1, 1); int L = 0, m = 1, b = 1; for (int i = 0; i < s.size(); i++) { ll d = 0; for (int j = 0; j < L + 1; j++) d = (d + (ll)C[j] * s[i - j]) % mod; if (d == 0) m++; else if (2 * L <= i) { VI T = C; ll c = mod - d * fast_mod(b, mod - 2, mod) % mod; while (C.size() < B.size() + m) C.push_back(0); for (int j = 0; j < B.size(); j++) C[j + m] = (C[j + m] + c * B[j]) % mod; L = i + 1 - L, B = T, b = d, m = 1; } else { ll c = mod - d * fast_mod(b, mod - 2, mod) % mod; while (C.size() < B.size() + m) C.push_back(0); for (int j = 0; j < B.size(); j++) C[j + m] = (C[j + m] + c * B[j]) % mod; m++; } } return C; } int gao(VI a, ll n) { VI c = BM(a); c.erase(c.begin()); for (int i = 0; i < c.size(); i++) c[i] = (mod - c[i]) % mod; return solve(n, c, VI(a.begin(), a.begin() + c.size())); } } // namespace linear_seq int main() { //freopen("in.txt", "r", stdin); //填数字的时候带上模数之后的 ll t, n; scanf("%d", &t); while (t--) { scanf("%lld", &n); //在vi中填入自己推的数 8个以上 越多越好 printf("%lld ", linear_seq::gao(VI{3, 9, 20, 46, 106, 244, 560, 1286, 2956, 6794}, n-1)); } return 0; }
以上是关于杜教BM(解决线性递推式的模板)的主要内容,如果未能解决你的问题,请参考以下文章