看大数据最大技术难关之模糊检索,PostgreSQL如何攻克

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了看大数据最大技术难关之模糊检索,PostgreSQL如何攻克相关的知识,希望对你有一定的参考价值。

参考技术A 大数据正在向我们奔来。尽管业务场景不会完全相同,但在其中一个最典型场景——模糊检索中,技术需求却出奇的一致。

比如说:

物联网,往往会产生大量的数据,除了数字数据,还有字符串类的数据,例如条形码,车牌,手机号,邮箱,姓名等。假设用户需要在大量的传感数据中进行模糊检索,甚至规则表达式匹配,有什么高效的方法呢?

医药,市面上发现了一批药品可能有问题,需要对药品条码进行规则表达式查找,找出复合条件的药品流向。但怎么才能在如此复杂的系统中,用高效方法来实现?

公安,侦查行动时,有可能需要线索的检索。如用户提供的残缺的电话号码,邮箱,车牌,IP地址,QQ号码,微信号码等进行交叉搜索,根据这些信息加上时间的叠加,模糊匹配和关联,最终找出罪犯。但这个流程,可有高效方法?

相同的需求还有很多。几乎每一个模糊匹配的场景下,都需要正则表达式匹配,这和人脸拼图有点类似,我们已经看到强烈的需求已经产生。但技术方面,要怎么做更好?

在我看来:正则匹配和模糊匹配通常是搜索引擎的特长,但是如果你使用的是PostgreSQL数据库照样能实现,并且性能不赖,加上分布式方案
(譬如 plproxy, pg_shard, fdw shard, pg-xc, pg-xl,
greenplum),处理百亿以上数据量的正则匹配和模糊匹配效果杠杠的,同时还不失数据库固有的功能,绝对是一举多得。

首先对应用场景进行一下分类,以及现有技术下能使用的优化手段。

.1. 带前缀的模糊查询,例如 like 'ABC%',在PG中也可以写成 ~ '^ABC'
可以使用btree索引优化,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.2. 带后缀的模糊查询,例如 like '%ABC',在PG中也可以写成 ~ 'ABC$'
可以使用reverse函数btree索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.3. 不带前缀和后缀的模糊查询,例如 like '%AB_C%',在PG中也可以写成 ~ 'AB.C'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

.4. 正则表达式查询,例如 ~ '[\d]+def1.?[a|b|0|8]1,3'
可以使用pg_trgm的gin索引,或者拆列用多列索引叠加bit and或bit or进行优化(只适合固定长度的端字符串,例如char(8))。

PostgreSQL pg_trgm插件自从9.1开始支持模糊查询使用索引,从9.3开始支持规则表达式查询使用索引,大大提高了PostgreSQL在刑侦方面的能力。
代码见 https://github.com/postgrespro/pg_trgm_pro

pg_trgm插件的原理,将字符串前加2个空格,后加1个空格,组成一个新的字符串,并将这个新的字符串按照每3个相邻的字符拆分成多个token。
当使用规则表达式或者模糊查询进行匹配时,会检索出他们的近似度,再进行filter。

以上是关于看大数据最大技术难关之模糊检索,PostgreSQL如何攻克的主要内容,如果未能解决你的问题,请参考以下文章

对比PigHive和SQL,浅看大数据工具之间的差异

从技术视角看大数据行业的发展趋势

工作中的Elasticsearch-模糊检索

pyqt5 tablewodget 模糊匹配

从历年 Gartner hype cycle 看大数据行业的发展历史和趋势

阿里为什么要举全集团之力做 Serverless?