获取openfalcon历史数据
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了获取openfalcon历史数据相关的知识,希望对你有一定的参考价值。
#!/usr/bin/python # --*-- coding: utf-8 --*-- # 获取用户画像集群平均qps,高峰qps,请求数,超过10ms的比例,平均响应时间 按照每天计算 import requests import time import json # 登录url login_url = 'http://192.168.10.2:8080/api/v1/user/login' # 历史数据url history_url = "http://192.168.10.2:8080/api/v1/graph/history" def get_sig(url): """返回openfalcon用户sig标记,否则无法拿到历史数据 result_json: 返回请求数据json格式 result:json格式转化成字典 sig: 用户标签 user: 用户信息 """ user = { 'name': "xxx", "password": "xxx" } result_json = requests.post(url,data=user) result = json.loads(result_json.text) sig = result['sig'] return sig class nginx_analysis(object): def __init__(self, sig, user, url): self.sig = sig self.user = user self.url = url self.api_token = '{"name":"' + self.user + '", "sig":"' + self.sig + '"}' self.falcon_header = { "Apitoken": self.api_token, "X-Forwarded-For": "127.0.0.1", "Content-Type": "application/json", "name": self.user, "sig": self.sig } def get_nginx_data(self): """获取nginx数据 因为上报到openfalcon的endpoints名字不同,所以上传两次数据 payload1: 获取所有主机的响应时间和每秒请求数 payload2: 获取所有主机请求超过10ms的比例 current_time: 当前时间 history_time: 24h前的时间 """ current_time = int(time.time()) history_time = current_time - 86400 payload1 = { "step": 60, "start_time": history_time, "hostnames": [ "hostname1", "hostname2" ], "end_time": current_time, "counters": [ "performance/name=nginx_request_time", ], "consol_fun": "AVERAGE" } payload2 = { "step": 60, "start_time": history_time, "hostnames": [ "hostname1", "hostname2" ], "end_time": current_time, "counters": [ "performance/name=nginx_accepts_handled_requests_sec" ], "consol_fun": "AVERAGE" } payload3 = { "step": 60, "start_time": history_time, "hostnames": [ "hostname3", "hostname4" ], "end_time": current_time, "counters": [ "nginx_request_percent/nginx_request_percent=10ms" ], "consol_fun": "AVERAGE" } params = { 'url': self.url, 'headers': self.falcon_header, 'timeout': 30 } # 上报数据放入数组 post_data_list = [payload1,payload2,payload3] # 返回数据放入数组 response_data_list = [] for i in post_data_list: params['data'] = json.dumps(i) result_json = requests.post(**params) result = json.loads(result_json.text) response_data_list.append(result) return response_data_list def get_result(self,origin_data_list): """分析最终结果 data: 传递的原始数据 """ #print len(origin_data_list) # 获取所有节点nginx响应时间 nginx_request_time = {} # 获取所有节点每秒请求次数 nginx_accepts_handled_requests_sec = {} # 获取所有节点超过10ms时间 nginx_request_percent = {} ##############计算响应时间################################## for data in origin_data_list[0]: key = data["endpoint"] values = data["Values"] count = len(values) # 每个节点的响应时间和 response_time_sum = 0 for i in values: if i['value']: response_time_sum += float(i['value']) # 每个节点的平均响应时间 per_sec_time = response_time_sum/(count-1) nginx_request_time[key] = float('%.1f' % per_sec_time) #所有节点的平均响应时间 avg_response_time = 0 #临时响应时间和 tmp_response_sum = 0 for key,value in nginx_request_time.items(): tmp_response_sum += value avg_response_time = tmp_response_sum/len(nginx_request_time) avg_response_time = float('%.2f' % avg_response_time) #print avg_response_time ################################################################ ######################计算每秒请求数########################### # 存放所有主机的请求数值 high_list = [] for data in origin_data_list[1]: key = data["endpoint"] values = data["Values"] count = len(values) # 每个节点的每秒请求数 qps_sum = 0 # 存放每个主机的请求数值 per_high_list = [] for i in values: if i['value']: per_high_list.append(i['value']) qps_sum += float(i['value']) # 每个节点的平均响应时间 high_list.append(max(per_high_list)) per_qps = qps_sum/(count-1) nginx_accepts_handled_requests_sec[key] = float('%.2f' % per_qps) #所有节点的平均qps avg_qps = 0 #临时qps和 tmp_qps_sum = 0 for key,value in nginx_accepts_handled_requests_sec.items(): tmp_qps_sum += value avg_qps = tmp_qps_sum/len(nginx_accepts_handled_requests_sec) # 每天请求数 request_sum = int(avg_qps * 14 * 86400) avg_qps = int(avg_qps*14) # 高峰qps high_qps = int(sum(high_list)) #print high_list,high_qps #print request_sum, avg_qps,high_qps ############################################################## #################################超过10ms的占比############## for data in origin_data_list[2]: key = data["endpoint"] values = data["Values"] count = len(values) # 每个主机超过10ms占比和 over_percent_sum = 0 for i in values: if i['value']: over_percent_sum += float(i['value']) # 每个节点超过10ms占比 per_over_percent = over_percent_sum/(count-1) nginx_request_percent[key] = float('%.1f' % per_over_percent) #所有节点的平均超过10ms占比 avg_over_percent = 0 #临时超过10ms占比和 tmp_over_percent_sum = 0 for key,value in nginx_request_percent.items(): tmp_over_percent_sum += value avg_over_percent = tmp_over_percent_sum/len(nginx_request_percent) avg_over_percent = float('%.2f' % avg_over_percent) #print avg_over_percent ############################################################ nginx_data = [avg_response_time,request_sum, avg_qps,high_qps,avg_over_percent] return nginx_data def main(): sig = get_sig(login_url) # 创建对象 nginx_analysis = Nginx_analysis(sig,'xxx',history_url) # 获取原始数据 nginx_origin_data = nginx_analysis.get_nginx_data() nginx_analisy = nginx_analysis.get_result(nginx_origin_data) print nginx_analisy if __name__ == '__main__': main()
以上是关于获取openfalcon历史数据的主要内容,如果未能解决你的问题,请参考以下文章