Emboss滤波器实现及应用

Posted wojianxin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Emboss滤波器实现及应用相关的知识,希望对你有一定的参考价值。

一. Emboss 滤波器介绍:

        Emboss滤波器常用于检测图像的边缘和轮廓,能够有效地增强图像的高频信息(边缘和轮廓),并保留图像的低频信息(图像内容)。

技术图片
Emboss 滤波器卷积核 ↑
 

二. 实验:实现Emboss滤波器,使用Emboss滤波器增强图像轮廓

 1 import cv2
 2 
 3 import numpy as np
 4 
 5 # Gray scale
 6 
 7 def BGR2GRAY(img):
 8 
 9     b = img[:, :, 0].copy()
10 
11     g = img[:, :, 1].copy()
12 
13     r = img[:, :, 2].copy()
14 
15     # Gray scale
16 
17     out = 0.2126 * r + 0.7152 * g + 0.0722 * b
18 
19     out = out.astype(np.uint8)
20 
21     return out
22 
23 # emboss filter
24 
25 def emboss_filter(img, K_size=3):
26 
27     H, W = img.shape
28 
29     # zero padding
30 
31     pad = K_size // 2
32 
33     out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float)
34 
35     out[pad: pad + H, pad: pad + W] = img.copy().astype(np.float)
36 
37     tmp = out.copy()
38 
39     # emboss kernel
40 
41     K = [[-2., -1., 0.],[-1., 1., 1.], [0., 1., 2.]]
42 
43     # filtering
44 
45     for y in range(H):
46 
47         for x in range(W):
48 
49             out[pad + y, pad + x] = np.sum(K * (tmp[y: y + K_size, x: x + K_size]))
50 
51     out = np.clip(out, 0, 255)
52 
53     out = out[pad: pad + H, pad: pad + W].astype(np.uint8)
54 
55     return out
56 
57 # Read image
58 
59 img = cv2.imread("../paojie.jpg").astype(np.float)
60 
61 # BGR2GRAY
62 
63 gray = BGR2GRAY(img)
64 
65 # emboss filtering
66 
67 out = emboss_filter(gray, K_size=3)
68 
69 # Save result
70 
71 cv2.imwrite("out.jpg", out)
72 
73 cv2.imshow("result", out)
74 
75 cv2.waitKey(0)
76 
77 cv2.destroyAllWindows()

 


三. 实验结果:

技术图片
Emboss 滤波器作用于图像后 ↑
 
技术图片
原图转换为灰度图像后 ↑
 

        可以看到,Emboss滤波器能够有效地增强图像的轮廓。


四. 参考内容:

  https://www.jianshu.com/p/0f7102dec590

以上是关于Emboss滤波器实现及应用的主要内容,如果未能解决你的问题,请参考以下文章

MATLAB-中值滤波原理实现及应用

MATLAB-中值滤波原理实现及应用

音频均衡器原理及实现

音频均衡器原理及实现

音频均衡器原理及实现

音频均衡器原理及实现