tf.nn.embedding_lookup
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tf.nn.embedding_lookup相关的知识,希望对你有一定的参考价值。
鏍囩锛?a href='http://www.mamicode.com/so/1/form' title='form'>form nbsp space weight tensor col als mono
1.tf.nn.embedding_lookup鐢ㄦ潵閫夊彇寮犻噺閲屽搴旂殑绱㈠紩鍏冪礌
%tensorflow_version 2.x import tensorflow as tf p=tf.Variable(tf.random.uniform([10,1])) b=tf.nn.embedding_lookup(p,[1,3]) p b
杈撳嚭鐨勭粨鏋滃垎鍒负p锛?/span>
<tf.Variable 鈥榁ariable:0鈥?shape=(10, 1) dtype=float32, numpy= array([[0.79612887], [0.28201234], [0.20101798], [0.1620121 ], [0.88669086], [0.4243393 ], [0.51021874], [0.09500039], [0.12813437], [0.42305255]], dtype=float32)>
b:
<tf.Tensor: shape=(2, 1), dtype=float32, numpy= array([[0.28201234], [0.1620121 ]], dtype=float32)>
鍙互鐪嬪嚭锛宐鏄敱p杈撳嚭鐨勫悜閲忎笂浣嶇疆1鍜?涓婂厓绱犵粍鎴愮殑銆?/span>
2.tf.random.uniform((6, 6), minval=low,maxval=high))杩斿洖6*6鐨勭煩闃碉紝浜х敓浜巐ow鍜宧igh涔嬮棿锛屼骇鐢熺殑鍊兼槸鍧囧寑鍒嗗竷鐨勩€?/span>
鎺ヤ笅鏉ユ洿鏀逛竴涓嬫暟鍊硷紝涓婇潰鏄敓鎴愪竴涓悜閲忥紝鎺ヤ笅鏉ョ敓鎴愪竴涓煩闃碉細
p=tf.Variable(tf.random.uniform([10,10],-1,1)) b=tf.nn.embedding_lookup(p,[1,3]) p b
浜х敓鐨勭粨鏋滀负p锛?/span>
<tf.Variable 鈥榁ariable:0鈥?shape=(10, 10) dtype=float32, numpy= array([[-0.7621522 , 0.6107156 , -0.47999907, 0.5350437 , 0.7630944 , 0.37270713, -0.8395808 , -0.879581 , -0.47662497, -0.05092502], [-0.21088243, -0.0150187 , -0.28028893, 0.3332212 , 0.4568975 , 0.05019474, -0.19229984, -0.4012766 , 0.38493705, 0.8479743 ], [ 0.3077824 , -0.8770895 , 0.12883782, 0.6170182 , -0.6244514 , -0.2808833 , 0.5709777 , 0.6452646 , 0.24578142, 0.3655765 ], [-0.5822737 , -0.710577 , -0.997102 , 0.8577807 , 0.82289314, -0.510561 , 0.95922303, -0.09372258, -0.80911994, 0.9954574 ], [-0.15612102, -0.00413752, 0.41538835, 0.50921464, 0.7637322 , 0.5406666 , -0.8686323 , -0.80358744, -0.12960792, 0.47586107], [ 0.33130383, -0.65484834, -0.6364062 , -0.12607336, 0.10087228, -0.54285645, 0.45991468, 0.36029506, 0.41191912, 0.65596604], [ 0.90655327, 0.86263967, 0.97394824, -0.9905188 , -0.03838801, -0.5840478 , -0.7306757 , -0.62264824, -0.19541001, 0.01948309], [ 0.27840662, -0.23048878, 0.2640462 , 0.27937698, -0.13661599, 0.72016 , -0.43872857, -0.40881586, 0.9849553 , -0.4254725 ], [ 0.824687 , -0.3534038 , 0.78239155, 0.22957778, -0.00436497, -0.5633409 , -0.41481328, -0.35603738, -0.22372437, -0.64321375], [-0.7983091 , 0.51379323, 0.87890744, -0.47110224, -0.91740274, -0.26170492, -0.8321235 , -0.46379066, -0.2834475 , -0.7457466 ]], dtype=float32)>
b锛?/span>
<tf.Tensor: shape=(2, 10), dtype=float32, numpy= array([[-0.21088243, -0.0150187 , -0.28028893, 0.3332212 , 0.4568975 , 0.05019474, -0.19229984, -0.4012766 , 0.38493705, 0.8479743 ], [-0.5822737 , -0.710577 , -0.997102 , 0.8577807 , 0.82289314, -0.510561 , 0.95922303, -0.09372258, -0.80911994, 0.9954574 ]], dtype=float32)>
鍙互鐪嬪嚭锛宐渚濇棫鏄痯涓1琛屽拰绗?琛岀殑鍊硷紝涔熷氨鏄粯璁ゆ槸浣滅敤鍦ㄨ涓婄殑
以上是关于tf.nn.embedding_lookup的主要内容,如果未能解决你的问题,请参考以下文章
TensorFlow中 tf.nn.embedding_lookup
TensorFlow中 tf.nn.embedding_lookup
深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)