KMP
Posted wendigo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了KMP相关的知识,希望对你有一定的参考价值。
KMP
作用:在一个文本字符串中找模式字符串出现次数、位置。
前缀知识:(color{#60d000}{ extbf{字符串}})。
算法名字来源:发明人 ( exttt{Knuth(D.E.Knuth)&Morris(J.H.Morris)&Pratt(V.R.Pratt)})。
比如要在文本字符串 (a= exttt{ababaababaabab}) 中找模式字符串 (b= exttt{abaabab}),暴力的做法就是枚举 (a[i]==b[1]),然后对 (a[isim i+len(b)-1]) 和 (b[1sim len(b)]) 进行匹配,代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,m,ans;
char a[N],b[N];
int main(){
scanf("%s%s",a+1,b+1);
n=strlen(a+1),m=strlen(b+1);
for(int i=1;i<=n-m+1;i++)
if(a[i]==b[1]){
bool ok=1;
for(int j=2;j<=m;j++)
if(a[i+j-1]!=b[j]){ok=0;break;} //#
if(ok) ans++;
}
printf("%d
",ans);
return 0;
}
时间复杂度为 (Theta(n imes m)),爆率百分百。而 (Theta(n+m)) 的KMP的精华就在于,每次上面代码标记的那行失配(匹配失败,(a[i+j-1]!=b[j]))以后,不需要让模式串 (b) 从头开始匹配,而是跳到一个固定的位置,开始匹配。
如下,灰色表示待匹配,绿色表示正在匹配(成功),红色表示正在匹配(失败),黑色表示已经匹配:
(color{gray}{ exttt{ababaababaabab}})
(color{gray}{ exttt{abaabab}})
(color{#60c000}{ exttt{a}}color{gray}{ exttt{babaababaabab}})
(color{#60c000}{ exttt{a}}color{gray}{ exttt{baabab}})
(color{black}{ exttt{a}}color{#60c000}{ exttt{b}}color{gray}{ exttt{abaababaabab}})
(color{black}{ exttt{a}}color{#60c000}{ exttt{b}}color{gray}{ exttt{aabab}})
(color{black}{ exttt{ab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{baababaabab}})
(color{black}{ exttt{ab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{abab}})
(color{black}{ exttt{aba}}color{red}{ exttt{b}}color{gray}{ exttt{aababaabab}})
(color{black}{ exttt{aba}}color{red}{ exttt{a}}color{gray}{ exttt{bab}})
文本串和模式串失配,不需要如下让模式串 (b) 从头开始匹配:
(color{black}{ exttt{a}}color{red}{ exttt{b}}color{gray}{ exttt{abaababaabab}})
(color{red}{ exttt{ a}}color{gray}{ exttt{baabab}}) ←错误示范
而是应该这样:
(color{black}{ exttt{aba}}color{#60c000}{ exttt{b}}color{gray}{ exttt{aababaabab}})
(spacespacecolor{black}{ exttt{a}}color{#60c000}{ exttt{b}}color{gray}{ exttt{aabab}})
这时我能感受到你诧异的表情,这不是玄学穿越,而是有依据的。对于模式串 (b) 成功匹配的前三个字符 ( exttt{aba}),满足该字符串最多前 (1) 个字符等于后 (1) 个字符,而前 (2) 个字符就不等于后 (2) 个字符了。所以这时,就可以知道两点:
1.(b) 的前 (1) 个字符能和 (a) 的第 (3sim 3) 个字符匹配。
2.如果把 (b) 的第 (1) 个字符对 (a) 的第 (2sim 2) 个字符,必将不会整个匹配成功。
所以根据 (b) 前 (3) 个字符组成的子串中最多前几个字符等于后几个字符,就可以得出失配后跳转的方法。为了更全面具体的解说,看如下继续匹配:
(color{black}{ exttt{abab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{ababaabab}})
(spacespacecolor{black}{ exttt{ab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{abab}})
(color{black}{ exttt{ababa}}color{#60c000}{ exttt{a}}color{gray}{ exttt{babaabab}})
(spacespacecolor{black}{ exttt{aba}}color{#60c000}{ exttt{a}}color{gray}{ exttt{bab}})
(color{black}{ exttt{ababaa}}color{#60c000}{ exttt{b}}color{gray}{ exttt{abaabab}})
(spacespacecolor{black}{ exttt{abaa}}color{#60c000}{ exttt{b}}color{gray}{ exttt{ab}})
(color{black}{ exttt{ababaab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{baabab}})
(spacespacecolor{black}{ exttt{abaab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{b}})
(color{black}{ exttt{ababaaba}}color{#60c000}{ exttt{b}}color{gray}{ exttt{aabab}})
(spacespacecolor{black}{ exttt{abaaba}}color{#60c000}{ exttt{b}})
如上,成功发现了一个模式串 (b) 在文本串 (a) 中出现的位置。这时候就不能在再沿着 (b) 继续匹配下去了,所以也可以看作是失配。因为对于字符串 (b) 的成功匹配的前 (7) 个字符组成的字符串,满足前两个字符等于后两个字符等于 ( exttt{ab}),所以这么跳转匹配:
(color{black}{ exttt{ababaabab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{abab}})
(spacespacespacespacespacespacespacecolor{black}{ exttt{ab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{abab}})
(color{black}{ exttt{ababaababa}}color{#60c000}{ exttt{a}}color{gray}{ exttt{bab}})
(spacespacespacespacespacespacespacecolor{black}{ exttt{aba}}color{#60c000}{ exttt{a}}color{gray}{ exttt{bab}})
(color{black}{ exttt{ababaababaa}}color{#60c000}{ exttt{b}}color{gray}{ exttt{ab}})
(spacespacespacespacespacespacespacecolor{black}{ exttt{abaa}}color{#60c000}{ exttt{b}}color{gray}{ exttt{ab}})
(color{black}{ exttt{ababaababaab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{b}})
(spacespacespacespacespacespacespacecolor{black}{ exttt{abaab}}color{#60c000}{ exttt{a}}color{gray}{ exttt{b}})
(color{black}{ exttt{ababaababaaba}}color{#60c000}{ exttt{b}})
(spacespacespacespacespacespacespacecolor{black}{ exttt{abaaba}}color{#60c000}{ exttt{b}})
然后又发现一个模式串 (b) 在文本串 (a) 中出现的位置,并且所有 (a) 的所有字符都已经匹配结束,所以结束匹配。最终得出,(b) 在 (a) 中出现了 (2) 次,两次中 (b) 的第一个字符分别对应 (a) 的第 (3) 个和第 (8) 个字符。
所以如果我们现在已经有数组 (nex[x]) 表示 (b) 的前 (x) 个字符所组成的字符串中,最多前 (nex[x]) 个字符与后 (nex[x]) 个字符完全一样((0le nex[x]< x)),那么匹配的代码就可以这么写:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{ //字符串
//个人比较喜欢用class,如果不懂可以去查查class的用法
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}a;
class KMP:public charstar{
public:
int nex[N];
void build(){
//构造nex[]数组的函数先不说
}
void found(charstar&book,queue<int>&q){//book表示a,arr表示b本身
for(int i=1,j=0;i<=book.len;i++){
while(j&&book[i]!=arr[j+1]) j=nex[j];
if(book[i]==arr[j+1]) j++;
if(j==len) q.push(i-len+1),j=nex[j];
}
}
}b;
queue<int> ans;
int main(){
scanf("%s%s",&a[1],&b[1]);
a.leng(),b.leng();
b.build(),b.found(a,ans);
while(ans.size()) printf("%d
",ans.front()),ans.pop();//输出每次成功匹配时b[1]对应a[几]
for(int i=1;i<=b.len;i++) printf("%d%c",b.nex[i],"
"[i<b.len]);
return 0;
}
这样的算法时间复杂度是 (Theta(n+m)) 的,为了保证复杂度,求 (nex[]) 数组也必须 (Theta(m+m))。聪明的三个科学家想到了一个很微妙的方法——(b) 自己匹配自己。这就难解释了,放代码:
void build(){
//nex[1]=0; 因为main外定义的数组值默认为0,0<=nex[i]<i
for(int i=2,j=0;i<=len;i++){
while(j&&arr[j+1]!=arr[i]) j=nex[j];
if(arr[j+1]==arr[i]) j++;
nex[i]=j;
}
}
和上面的匹配几乎一模一样。
如果你懂了,蒟蒻就放代码了:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}a;
class KMP:public charstar{
public:
int nex[N];
void build(){
for(int i=2,j=0;i<=len;i++){
while(j&&arr[j+1]!=arr[i]) j=nex[j];
if(arr[j+1]==arr[i]) j++;
nex[i]=j;
}
}
void found(charstar&book,queue<int>&q){
for(int i=1,j=0;i<=book.len;i++){
while(j&&book[i]!=arr[j+1]) j=nex[j];
if(book[i]==arr[j+1]) j++;
if(j==len) q.push(i-len+1),j=nex[j];
}
}
}b;
queue<int> ans;
int main(){
scanf("%s%s",&a[1],&b[1]);
a.leng(),b.leng();
b.build(),b.found(a,ans);
while(ans.size()) printf("%d
",ans.front()),ans.pop();
for(int i=1;i<=b.len;i++) printf("%d%c",b.nex[i],"
"[i<b.len]);
return 0;
}
如果你看不惯这种匹配双重循环的版本,另一个版本:
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
class charstar{
public:char arr[N];
int len;
char& operator[](int x){return arr[x];}
void leng(){len=strlen(arr+1);}
}s1;
class KMP:public charstar{
public:
int nex[N];
void build(){
for(int i=1,j=0;i<=len;)
if(!j||arr[i]==arr[j]) nex[++i]=++j;
else j=nex[j];
}
void found(charstar&book,queue<int>&q){
for(int i=1,j=1;i<=book.len;){
if(!j||book[i]==arr[j]) i++,j++;
else j=nex[j];
if(j==len+1) q.push(i-len),j=nex[j];
}
}
}s2;
queue<int> ans;
int main(){
scanf("%s%s",&s1[1],&s2[1]);
s1.leng(),s2.leng();
s2.build(),s2.found(s1,ans);
while(ans.size()) printf("%d
",ans.front()),ans.pop();
for(int i=1;i<=s2.len;i++) printf("%d%c",s2.nex[i+1]-1,"
"[i<s2.len]);
return 0;
}
祝大家学习愉快!
以上是关于KMP的主要内容,如果未能解决你的问题,请参考以下文章