(一)晶格振动
1.一维单原子链
??设平衡时第n个原子与第m个原子相距为r0=(n-m)a,对应势能为u(r0),当间距发生微小变化xij=δr时:
(1)势能变化
[U(r_0+delta r)=U(r_0)+(frac{partial U}{partial r})_{r_0}delta r + (frac{partial^2 U}{partial r^2})_{r_0}(delta r)^2+o[(delta r)^2]
\space
\overset{(frac{partial U}{partial r})_{r_0}=0}{====} U(r_0) + (frac{partial^2 U}{partial r^2})_{r_0}(delta r)^2 quad 略去非线性项【简谐近似】
]
(2)相互作用力
[f=-{frac{U(r_0+delta r)-U(r_0)}{delta r}}=-(frac{partial^2 U}{partial r^2})_{r_0}delta r=-eta x_{ij}
]
??其中β即弹性恢复系数。
(3)色散关系
??只考虑近邻原子原子时的运动方程:
[mddot{x}_n=-eta (x_n-x_{n-1})-eta(x_n-x_{n+1})
]
??共N个方程,其试探解为格波(所有原子同幅同频振动,相邻原子相位差固定):
[x_n=Ae^{-i(omega t -naq)}
\space
x_{n+1}=Ae^{-i[omega t -(n+1)aq]}
\space
s.t.quad m(-omega^2)Ae^{-i(omega t -naq)}
\space
=-eta A{2e^{-i(omega t -naq)}-e^{-i[omega t -(n+1)aq]}-e^{-i[omega t -(n-1)aq]}}
\space
\Rarr momega^2=eta(2-e^{iaq}-e^{-iaq})
\space
=2eta(1-cos{aq})=4etasin^2{frac{aq}{2}}
]
??即得色散关系(图像略):
[omega=2sqrt{frac{eta}{m}}|sin{frac{aq}{2}}|
]
(4)简约布里渊区
??易知:
[omega(q)=omega(-q)
\space
\omega(q+frac{2npi}{a})=omega(q)
]
??只需要取简约布里渊区:
[qin [-frac{pi}{a},frac{pi}{a}]
]
??即可完整描述这个色散关系。
(5)玻恩-卡曼边界条件 与 q的取值
??一维单原子链共N个原子,假定这些原子成环(但曲率半径大,运动方程仍按直线处理),有:
[x_n=x_{n+N}
\space
\Rarr Ae^{-i(omega t -naq)}=Ae^{-i[omega t -(n+N)aq]}
\space
\Rarr e^{iNaq}=1 Rarr Naq=2npi Rarr q=frac{2npi}{Na} quad nin Z
\space
asquad qin[-frac{pi}{a},frac{pi}{a}] Rarr nin [-frac{N}{2},frac{N}{2}]
]
??即q可以取N个值,完整的描述了N个原子的一维运动。
(6)长波极限
[lim_{q
arr 0}omega=lim_{q
arr 0}2sqrt{frac{eta}{m}}|sin{frac{aq}{2}}|≈asqrt{frac{eta}{m}}|{q}|
]
??其中:
[v_p=asqrt{frac{eta}{m}}quad连续介质波的传递速度
]
2.一维双原子链
??设一维双原子链的晶格常数为2a,弹性恢复系数为β,且其中一个原子的质量m小于另一个原子的质量M。
(1)运动方程和试探解 只考虑近邻原子
[egin{cases}
Mddot{x}_{2n}&=-eta(x_{2n}-x_{2n-1})-eta(x_{2n}-x_{2n+1})mddot{x}_{xn+1}&=-eta(x_{2n+1}-x_{2n})-eta(x_{2n+1}-x_{2n+2})
end{cases}
\space
\Rarr x_{2n}=Ae^{-i(omega t -2naq)}quad x_{2n+1}=Be^{-i[omega t -(2n+1)aq]}
]
(2)色散关系
??将试探解代入运动方程,可知:
[egin{cases}
Momega^2&=2eta(1-frac{B}{A}cos{aq})momega^2&=2eta(1-frac{A}{B}cos{aq})
end{cases}
]
??亦即:
[egin{cases}
2eta cos{aq}B+(Momega^2-2eta)A&=0(momega^2-2eta)B+2etacos{aq}A&=0
end{cases}
]
??AB要有非零解,其系数行列式应为0,由此可以推得色散关系:
[4eta^2cos^2{aq}-(momega^2-2eta)(Momega^2-2eta)=0
\space
\Rarr
egin{cases}
omega_A^2=frac{eta}{mM}[{(m+M)-sqrt{m^2+M^2+2mMcos{2aq}}}] &声学支\omega_o^2=frac{eta}{mM}[{(m+M)+sqrt{m^2+M^2+2mMcos{2aq}}}] &光学支
end{cases}
]
??另外,可以推得:
[(omega_A)_{max}=sqrt{frac{eta}{mM}[{(m+M)-(M-m)}]}=sqrt{frac{2eta}{M}} quad B=0 quad 轻原子不动
\space
(omega_o)_{min}=sqrt{frac{eta}{mM}[{(m+M)+(M-m)}]}=sqrt{frac{2eta}{m}}quad A=0quad 重原子不动
\space
(omega_o)_{max}=sqrt{frac{eta}{mM}[{(m+M)+(M+m)}]}=sqrt{frac{2eta}{m^*}}quad m^*=frac{mM}{m+M}quad 质心运动
]
(3)q的取值
??由周期性边界条件:
[x_{2n}=x_{2n+1}Rarr e^{-i2Naq}=1Rarr q=frac{npi}{Na} quad nin Z
]
??由色散关系的周期性和对称性,可以限制q在简约布里渊区内,从而有q可以去N个值:
[qin[-frac{pi}{2a},frac{2pi}{2a}]Rarr nin[-frac{N}{2},frac{N}{2}]
]
??由于有两支格波,所以频率共有2N个,完整描述了2N个原子的一维振动。
(4)长波极限
[lim_{q
arr 0}omega_A={
frac{eta}{mM}[{(m+M)-sqrt{m^2+M^2+2mM-4mMsin^2{aq}}}]}_{q
arr0}^{frac{1}{2}}
\space
=sqrt{frac{eta (m+M)}{mM}}sqrt{1-sqrt{1-
frac{4mM}{(m+M)^2}a^2q^2}}
\space
\overset{sqrt{1-t}≈1-frac{t}{2}}{implies}sqrt{frac{eta (m+M)}{mM}}
sqrt{1-(1-
frac{2mM}{(m+M)^2}a^2q^2)}
\space
=asqrt{frac{2eta}{m+M}}|q|≈v_p|q|(连续介质弹性波)
]
(5)相邻原子振幅比
[frac{A}{B}=frac{2etacos{aq}}{2eta-Momega^2}
]
??对于声学支,原子间同向运动,代表了原胞的质心运动。
[quad omega_Aleqsqrt{frac{2eta}{M}}Rarr(frac{A}{B})_A>0quad&quadlim_{q
arr0}(frac{A}{B})_A=1
]
??对于光学支,原子间反向运动,代表了原子间相对振动。
[quad omega_ogeqsqrt{frac{2eta}{M}}Rarr(frac{A}{B})_o>0quad&quadlim_{q
arr0}(frac{A}{B})_o=-frac{m}{M}
\space
\Rarr AM+Bm=0 quad 质心不动
]
3.三维运动
(1)色散关系
??设每原胞有N个原子,则应由3N个线性振动方程,得出共有3N支ω解,构成色散关系。其中,有3支声学波,3N-3支光学波。
??对于原胞含有n个原子的晶体的m维振动,应有m支声学波,m(n-1)支光学波。
(2)q的取值
??设总共有N=NxNyNz个原胞,可得:
[e^{iN_ivec{a}_icdotvec{q}}=1Rarr N_ivec{a}_icdotvec{q}=2n_ipiquad n_iin Z
]
??又有倒格矢与原胞基矢的正交性:
[vec{b}_icdotvec{a}_j=2pidelta_{ij}Rarr vec{q}=sum_{i=1}^3{{frac{n_i}{N_i}}vec{b}_i}
]
??将q限制在简约布里渊区(一个倒格子)内,可知q可取N个值,完整描述N个原胞的共同运动。
??把q替换为k,称之为波矢,则有波矢体积Vk和波矢密度 ρ:
[V_k=[frac{vec{b}_1}{N_1},frac{vec{b}_2}{N_2},frac{vec{b}_3}{N_3}]=frac{Omega^*}{N}=frac{(2pi)^3}{NOmega}=frac{(2pi)^2}{V_c}
\space
ρ=frac{1}{V_k}=frac{V_c}{(2pi)^3}
quad[=egin{cases}
frac{L}{2pi}&一维\frac{S}{(2pi)^2}&二维
end{cases}]
]
(二)声子与热容
1.晶格振动的能量量子化(正则化)
??※涉及到理论力学,不需要看。
??由傅里叶展开,设:
[x_n(t)=frac{1}{sqrt{Nm}}sum_q{Q_q(t)e^{-inaq}}
]
??可以推知:
??(1)
[x_n^*(t)=frac{1}{sqrt{Nm}}sum_q{Q_q^*(t)e^{inaq}}
\space
x_n(t)=frac{1}{sqrt{Nm}}sum_{-q}{Q_{-q}(t)e^{inaq}}
\space
\Rarr Q_{-q}(t)=Q_q^*(t)
]
??(2)
[q-q‘=frac{2mpi}{Na}
\space
\overset{等比求和}{implies}
egin{cases}
frac{1}{N}sum_n{e^{ina(q-q‘)}}=delta_{qq‘}\frac{1}{N}sum_q{e^{i(n-n‘)aq}}=delta_{nn‘}
end{cases}
]
??(3)
[T(动能项)=frac{m}{2}sum_n(dot{x}_n)^2quadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
\space
=frac{1}{2N}sum_n{(sum_{q‘}dot{Q_{q‘}}e^{-inaq‘})(sum_{q}dot{Q_{q}}e^{-inaq})}quadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
\space
\overset{交换求和顺序}{implies}frac{1}{2}sum_{q,q‘}{dot{Q_{q‘}}dot{Q_{q}}}[frac{1}{N}sum_q{e^{-ina(q+q‘)}}]quadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
\space
=frac{1}{2}sum_{q,q‘}{dot{Q_{q‘}}dot{Q_{q}}}delta_{-q,q‘}=frac{1}{2}sum_{q}{dot{Q_q^*}dot{Q_{q}}}=frac{1}{2}sum_{q}{|dot{Q_q}|^2}quadquadquadquadquadquadquadquadquadquadquadquad
\space
U(势能项)=frac{eta}{2}sum_m(x_{n+1}-x_n)^2quadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
\space
=frac{eta}{2Nm}sum_n{(sum_{q‘}Q_{q‘}e^{-i(n+1)aq‘}-sum_{q‘}Q_{q‘}e^{-inaq‘})(sum_q Q_q e^{-i(n+1)aq}-sum_q Q_q e^{-inaq})}
\space
=frac{eta}{2m}sum_{q,q‘}{Q_{q‘} Q_{q}}cdot(frac{1}{N}sum_n{[e^{-i(n+1)a(q+q‘)}+e^{-ina(q+q‘)}-(e^{-iaq‘}+e^{-iaq})e^{-ina(q+q‘)}])}
\space
=frac{eta}{2m}sum_{q,q‘}{Q_{q‘} Q_{q}}cdot(sum_n{[e^{-ia(q+q‘)}+1-e^{-iaq‘}+e^{-iaq}])delta_{q‘,-q}}quadquadquadquadquadquadquadquadquad
\space
=frac{eta}{2m}sum_q {|Q_{q}|^2}cdot(2-e^{iaq}+e^{-iaq})quadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
\space
=frac{eta}{m}sum_q {|Q_{q}|^2}cdot(1-cos{aq})=frac{1}{2}sum_q {omega_q^2|Q_{q}|^2}quadquadquadquadquadquadquadquadquadquadquadquadquadquadquad
]
??(4)哈密顿量
??注:Pq是广义动量。
[hat{H}=sum_q{[P_qdot{Q}_q-(T-U)]}
\space
=sum_q{[frac{partial(T-U)}{partial dot{Q}_q}dot{Q}_q-(T-U)]}
\space
=frac{1}{2}sum_q {(omega_q^2|Q_{q}|^2+|dot{Q}_{q}|^2)}
]
??又有广义力:
[ddot{Q}_q=frac{partial hat{H}}{partial Q_q}=-omega_q^2Q_q
Rarr ddot{Q}_q+omega_q^2Q_q=0[谐振子方程]
\space
\Rarr E(omega_q)=(n_q+frac{1}{2})hbaromega_q
\space
\Rarr E=sum_{i=1}^N{(n_i+frac{1}{2})hbaromega_i}
]
??N个原子的振动被转化为N个正则谐振子,他们对应的量子数ni是声子数,是一种准粒子(具有量子行为,但不是真实粒子),服从玻色分布:
[overline{n_i}=frac{1}{e^{frac{hbar omega_i}{k T}}-1}
]
2.热容理论
(1)杜隆-珀替定律(经典理论)
??N个原子在三个方向上独立振动,由能均分定理(3个平动自由度,3个转动自由度):
[C_V=frac{partial(6Nfrac{1}{2}kT)}{partial T}=3Nk
]
??在常温下该公式较为符合,但是在极低温下:
[C_Vpropto T^3
]
(2)量子理论
??晶体三维振动的能量应当是3N个谐振子的能量总和,也即声子数对应的能量总和,故有:
[overline{E}=sum_{i=1}^{3N}{overline{E}_i}=sum_{i=1}^{3N}{(frac{1}{e^{frac{hbar omega_i}{k T}}-1}+frac{1}{2})hbaromega_i}
\space
\Rarr C_V=frac{partial overline{E}}{partial T}=ksum_{i=1}^{3N}{(frac{hbar omega_i}{k T})^2frac{e^{frac{hbar omega_i}{k T}}}{(e^{frac{hbar omega_i}{k T}}-1)^2}}
\space
\overset{omega准连续}{implies}C_V=kint_0^{omega_m}{(frac{hbar omega}{k T})^2frac{e^{frac{hbar omega}{k T}}}{(e^{frac{hbar omega}{k T}}-1)^2}}ρ(omega)domega
\space
subjectspace toquad int_0^{omega_m}ρ(omega)domega=3N
]
??其中ωm为上限频率,ρ(ω)为振动模式密度(在ω附近的振动模式数量):
[int ρ(omega)domega=intfrac{V_c}{(2pi)^3}dV=frac{V_c}{(2pi)^3}int_{Omega^*} dSdq=frac{V_c}{(2pi)^3}int_{Omega^*}frac{ dSdomega}{|
abla_qomega(q)|}
\space
\Rarr
ho(omega)=frac{V_c}{(2pi)^3}int_{S^*}frac{dS}{|
abla_qomega(q)|}
]
??例如,对于一维单原子链,其振动模式密度为:
[
ho(q)=2 imesfrac{L}{2pi}=frac{L}{pi}quad[正负两向波矢]
\space
\omega^2=frac{4eta}{m}sin^2{frac{aq}{2}}Rarr frac{domega}{dq}=asqrt{frac{eta}{m}-frac{omega^2}{4}}
\space
\Rarr
ho(omega)=frac{L}{pi}frac{domega}{dq}=frac{L}{pi}frac{1}{asqrt{frac{eta}{m}-frac{omega^2}{4}}}
\space
\overset{L=Na}{underset{omega_m^2=frac{4eta}{m}}{implies}}
ho(omega)=frac{2N}{pi}frac{1}{sqrt{omega_m^2-omega^2}}
]
(3)爱因斯坦模型
??所有原子都以相同的频率ω振动,有:
[overline{E}=3Nhbaromega(frac{1}{e^{frac{hbar omega}{k T}}-1}+frac{1}{2})
\space
\Rarr C_V= 3Nkfrac{(frac{hbar omega}{k T})^2}{(e^{frac{hbar omega}{k T}}-1)^2}e^{frac{hbar omega}{k T}}
\space
\overset{frac{hbaromega}{k}= heta_E}{implies}3Nkfrac{(frac{ heta_E}{T})^2}{(e^{frac{ heta_E}{T}}-1)^2}e^{frac{ heta_E}{T}}=3Nkf_E(frac{ heta_E}{T})
]
??其中fE是爱因斯坦比热函数。在极限条件下:
[①quad Tgg heta_ERarr e^{frac{ heta_E}{T}}≈ 1+frac{ heta_E}{T}
\space
\lim_{T
arrinfty}{C_V}=3Nk[杜隆-珀替定律]
\space
②quad Tll heta_ERarr e^xgg1
\space
\lim_{T
arr0}{C_V}=3Nklim_{x
arr0}{x^2 e^{-x}}=0
]
??符合实验结果,但是下降过快。原因是爱因斯坦特征温度θE(100K~300K)对应的频率约1013Hz,但极低温下上限频率并没有这么高。
(4)德拜模型
??将所有的格波都视为连续介质弹性波,分为2支横波和1支纵波,他们分别满足色散关系:
[omega_t=c_tqquadomega_l=c_lq
]
??有震动模式密度计算公式,可知:
[int_{S^*} dS=4pi q^2quadfrac{domega_i}{dq}=c_i
\space
\Rarr
ho_i(omega)=frac{V_c}{(2pi)^3}frac{4pi q^2}{c_i}=frac{V_c}{2pi^2}frac{omega^2}{c_i^3}
\space
\Rarr
ho(omega)=frac{V_c}{2pi^2}{omega^2}(frac{1}{c_l^3}+frac{2}{c_t^3})=frac{V_c}{2pi^2}frac{3omega^2}{overline{c}^3}
\space
as quad frac{3}{overline{c}^3}=frac{1}{c_l^3}+frac{2}{c_t^3}
\space
\Rarrint_0^{omega_m}frac{V_c}{2pi^2}frac{3omega^2}{overline{c}^3}domega=frac{V_c}{2pi^2}frac{omega_m^3}{overline{c}^3}=3N
\space
\Rarr omega_D=omega_m=sqrt[3]{frac{6Noverline{c}^3pi^2}{V_c}}
]
??ωD称为德拜频率。则有:
[
ho(omega)=frac{9N}{omega}(frac{omega}{omega_D})^3
\space
\Rarr C_V=kint_0^{omega}{(frac{hbar omega}{k T})^2frac{e^{frac{hbar omega}{k T}}}{(e^{frac{hbar omega}{k T}}-1)^2}}frac{9N}{omega}(frac{omega}{omega_D})^3domega
\space
\overset{x=frac{hbaromega}{kT}}{implies}
C_V=frac{9Nk}{omega_D^3}int_0^{frac{hbaromega_D}{kT}}{x^2frac{e^x}{(e^x-1)^2}}(frac{kT}{hbar}x)^2 d(frac{kT}{hbar}x)
\space
\Rarr C_V=9Nk(frac{kT}{hbaromega_D})^3int_0^{frac{hbaromega_D}{kT}}{frac{x^4e^x}{(e^x-1)^2}} dx
\space
\overset{ heta_D=frac{hbaromega_D}{k}}{implies}C_V=3Nkcdot [3(frac{T}{ heta_D})^3int_0^{frac{ heta_D}{T}}{frac{x^4e^x}{(e^x-1)^2}} dx]=3Nkf_D(frac{ heta_D}{T})
]
??其中fD是德拜比热函数。在极限条件下:
[①quad Tgg heta_DRarr xll1
\space
f_D=3(frac{T}{ heta_D})^3int_0^{frac{ heta_D}{T}}{frac{x^4}{(e^{frac{x}{2}}-e^{-frac{x}{2}})^2}} dx
\space
≈(frac{T}{ heta_D})^3int_0^{frac{ heta_D}{T}}{frac{3x^4}{[(1+frac{x}{2})-(1-frac{x}{2})]^2}} dx
\space
≈(frac{T}{ heta_D})^3int_0^{frac{ heta_D}{T}}3x^2 dx=1Rarr C_V
arr 3Nk
\space
②quad Tll heta_DRarr x
arrinfty
\space
f_D=3(frac{T}{ heta_D})^3int_0^{infty}{frac{x^4e^x}{(e^{x}-1)^2}} dx
\space
≈3(frac{T}{ heta_D})^3int_0^{infty}{x^4e^{-x}}dx=frac{72}{ heta_D^3}T^3
\space
\Rarr C_V=frac{216Nk}{ heta_D^3}T^3propto T^3
]
??上式积分更严格的结果是:
[C_V=frac{12pi^4}{5}frac{Nk}{ heta_D^3}T^3
]