pytorch 数据维度变换

Posted jaysonteng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch 数据维度变换相关的知识,希望对你有一定的参考价值。

1、view和reshape:

* 两者功能完全一样。只是pytorch 0.3版本默认是view,为了和Numpy一致,后来增加了reshape的api

* 注意:变换前后的数据大小必须一样

技术图片

2、squeeze v.s. unsqueeze

1)unsqueeze,将维度展开。

技术图片

如下图所示:

一维数据插入-1以后,将数据变成二维(1行2列,变为2行1列)

如果插入0,会将1行2列,变成1行1列(1列里面又是1行1列)

技术图片

 

 2)squeeze:删减维度

与unsqueeze作用刚好相反。

a.squeeze()默认是删减所有为1的维度数据,如下图所示:

技术图片

3、expand v.s. repeat

1)expand:扩展维度到指定维度

技术图片

2)repeat:

复制原维度多少倍。(不建议使用,因为复制数据会重新申请内存空间,比较占内存)

技术图片

 

 4、t:矩阵转置:

技术图片

5、transpose v.s. permute

1)transpose:维度交换

技术图片

 torch.all、torch.eq  # 用于比较两个数据是否一致

2)permute:

调用一次或多次的transpose来达到交换

技术图片

 

6、broadcast广播(自动扩展):

1)特点:

自动扩展维度,并且不用复制数据,节省空间

 技术图片

 

2)不能broadcast的情况:

给定A的维度[4 32 8],若给定B[4]。因为广播(默认)是从小维度开始,即此处的8所在维度。因为4属于8的一半维度,而另外的两个维度可以扩展为4 32,最终导致8所在维度缺少一半数据,所以此时不能扩张。(如果给定[1],可以8的每个数字加上1,或者给定[8],每个元素一一对应相加,否则不能扩张)

3)广播例子:

技术图片

 

 技术图片

 

4)综上,可以广播的条件:

要么不给定维度,要么给定1,要么给定原数据相同的维度。

 技术图片

以上是关于pytorch 数据维度变换的主要内容,如果未能解决你的问题,请参考以下文章

pytorch 数据维度变换

PyTorch中Tensor的维度变换实现

pytorch张量数据索引切片与维度变换操作大全(非常全)

深度学习--PyTorch维度变换自动拓展合并与分割

pytorch维度变换

pytorch进行维度变换以及形状变换