1163:The Triangle(动态规划)
Posted aiqinger
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1163:The Triangle(动态规划)相关的知识,希望对你有一定的参考价值。
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.- 输入
- Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
- 输出
- Your program is to write to standard output. The highest sum is written as an integer.
- 样例输入
-
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
- 样例输出
-
30
- 来源
- IOI 1994
- 当N很大时,递归会超时
- 递归:
1 #include <bits/stdc++.h> 2 using namespace std; 3 int a[105][105],n; 4 int maxsum(int i,int j) { 5 if(i==n) { 6 return a[i][j]; 7 } 8 int sum1=maxsum(i+1,j); 9 int sum2=maxsum(i+1,j+1); 10 return a[i][j]+max(sum1,sum2); 11 } 12 int main() { 13 cin>>n; 14 for(int i=1; i<=n; i++) { 15 for(int j=1; j<=i; j++) { 16 cin>>a[i][j]; 17 } 18 } 19 cout<<maxsum(1,1); 20 21 return 0; 22 }
所以选择动态规划,在每一步求得最大值时记录下来,下次就无须再次计算。
1 #include <bits/stdc++.h> 2 using namespace std; 3 int a[105][105],n; 4 int ms[105][105]; 5 int maxsum(int i,int j) { 6 if(i==n) { 7 return a[i][j]; 8 } 9 if(ms[i+1][j]==-1) { 10 ms[i+1][j]=maxsum(i+1,j); 11 } 12 if(ms[i+1][j+1]==-1) { 13 ms[i+1][j+1]=maxsum(i+1,j+1); 14 } 15 return a[i][j]+max(ms[i+1][j],ms[i+1][j+1]); 16 } 17 int main() { 18 cin>>n; 19 memset(ms,-1,sizeof(ms)); 20 for(int i=1; i<=n; i++) { 21 for(int j=1; j<=i; j++) { 22 cin>>a[i][j]; 23 } 24 } 25 cout<<maxsum(1,1); 26 27 return 0; 28 }
以上是关于1163:The Triangle(动态规划)的主要内容,如果未能解决你的问题,请参考以下文章