PyTorch实现简单的生成对抗网络GAN

Posted picassooo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PyTorch实现简单的生成对抗网络GAN相关的知识,希望对你有一定的参考价值。

      生成对抗网络(Generative Adversarial Network, GAN)包括生成网络和对抗网络两部分。生成网络像自动编码器的解码器,能够生成数据,比如生成一张图片。对抗网络用来判断数据的真假,比如是真图片还是假图片,真图片是拍摄得到的,假图片是生成网络生成的。

      生成对抗网络就是让生成网络和对抗网络相互竞争,通过生成网络来生成假的数据,对抗网络判别该数据是真是假,最后希望生成网络生成的数据以假乱真骗过判别器。

技术图片

       以下程序主要来自廖星宇的《深度学习之PyTorch》的第六章,本文对原代码进行了改进:

import torch
from torch import nn
import torchvision.transforms as tfs
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import numpy as np
import matplotlib.pyplot as plt


def preprocess_img(x):
    x = tfs.ToTensor()(x)      # x (0., 1.)
    return (x - 0.5) / 0.5     # x (-1., 1.)


def deprocess_img(x):          # x (-1., 1.)
    return (x + 1.0) / 2.0     # x (0., 1.)


def discriminator():
    net = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
        )
    return net


def generator(noise_dim):
    net = nn.Sequential(
        nn.Linear(noise_dim, 1024),
        nn.ReLU(True),
        nn.Linear(1024, 1024),
        nn.ReLU(True),
        nn.Linear(1024, 784),
        nn.Tanh(),
    )
    return net


def discriminator_loss(logits_real, logits_fake):   # 判别器的loss
    size = logits_real.shape[0]
    true_labels = torch.ones(size, 1).float()
    false_labels = torch.zeros(size, 1).float()
    bce_loss = nn.BCEWithLogitsLoss()
    loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
    return loss


def generator_loss(logits_fake):  # 生成器的 loss
    size = logits_fake.shape[0]
    true_labels = torch.ones(size, 1).float()
    bce_loss = nn.BCEWithLogitsLoss()
    loss = bce_loss(logits_fake, true_labels)
    return loss


# 使用 adam 来进行训练,beta1 是 0.5, beta2 是 0.999
def get_optimizer(net, LearningRate):
    optimizer = torch.optim.Adam(net.parameters(), lr=LearningRate, betas=(0.5, 0.999))
    return optimizer


def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss,
                noise_size, num_epochs, num_img):

    f, a = plt.subplots(num_img, num_img, figsize=(num_img, num_img))
    plt.ion()  # Turn the interactive mode on, continuously plot

    for epoch in range(num_epochs):
        for iteration, (x, _)in enumerate(train_data):
            bs = x.shape[0]

            # 训练判别网络
            real_data = x.view(bs, -1)  # 真实数据
            logits_real = D_net(real_data)  # 判别网络得分

            rand_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5  # -1 ~ 1 的均匀分布
            fake_images = G_net(rand_noise)  # 生成的假的数据
            logits_fake = D_net(fake_images)  # 判别网络得分

            d_total_error = discriminator_loss(logits_real, logits_fake)  # 判别器的 loss
            D_optimizer.zero_grad()
            d_total_error.backward()
            D_optimizer.step()  # 优化判别网络

            # 训练生成网络
            rand_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5  # -1 ~ 1 的均匀分布
            fake_images = G_net(rand_noise)  # 生成的假的数据

            gen_logits_fake = D_net(fake_images)
            g_error = generator_loss(gen_logits_fake)  # 生成网络的 loss
            G_optimizer.zero_grad()
            g_error.backward()
            G_optimizer.step()  # 优化生成网络

            if iteration % 20 == 0:
                print(‘Epoch: {:2d} | Iter: {:<4d} | D: {:.4f} | G:{:.4f}‘.format(epoch,
                                                                                  iteration,
                                                                                  d_total_error.data.numpy(),
                                                                                  g_error.data.numpy()))
                imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
                for i in range(num_img ** 2):
                    a[i // num_img][i % num_img].imshow(np.reshape(imgs_numpy[i], (28, 28)), cmap=‘gray‘)
                    a[i // num_img][i % num_img].set_xticks(())
                    a[i // num_img][i % num_img].set_yticks(())
                plt.suptitle(‘epoch: {} iteration: {}‘.format(epoch, iteration))
                plt.pause(0.01)

    plt.ioff()
    plt.show()


if __name__ == ‘__main__‘:

    EPOCH = 5
    BATCH_SIZE = 128
    LR = 5e-4
    NOISE_DIM = 96
    NUM_IMAGE = 4   # for showing images when training
    train_set = MNIST(root=‘/Users/wangpeng/Desktop/all/CS/Courses/Deep Learning/mofan_PyTorch/mnist/‘,
                      train=True,
                      download=False,
                      transform=preprocess_img)
    train_data = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)

    D = discriminator()
    G = generator(NOISE_DIM)

    D_optim = get_optimizer(D, LR)
    G_optim = get_optimizer(G, LR)

    train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss, NOISE_DIM, EPOCH, NUM_IMAGE)

效果:

技术图片

 

以上是关于PyTorch实现简单的生成对抗网络GAN的主要内容,如果未能解决你的问题,请参考以下文章

pytorch生成对抗网络GAN的基础教学简单实例(附代码数据集)

50行PyTorch代码实现生成对抗网络(GANs)

学习(PyTorch教程+代码)50行代码实现对抗生成网络(GAN)

Pytorch Note45 生成对抗网络(GAN)

[Pytorch系列-75]:生成对抗网络GAN - 图像生成开源项目pytorch-CycleGAN-and-pix2pix - CycleGAN网络结构与代码实现详解

Pytorch深度学习50篇·······第七篇:GAN生成对抗网络---CGAN