多线程与并发6 并发容器

Posted zdcsmart

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多线程与并发6 并发容器相关的知识,希望对你有一定的参考价值。

  • 容器架构

技术图片

 

 

 

  • Hashtable  HashMap  SynchronizedHashMap  CurrentHashMap  CurrentSkipListMap(弥补同步的TreeMap)

  Hashtable所以方法默认加sychronized,

  HashMap默认没有加锁,

  而SynchronizedHashMap默认是Collections.synchronizedMap(Map<k,v> map)返回一个同步map。

  CurrentHashMap是多线程真正用的,本来是拉链表,JDK1.8后变成红黑树.

ConcurrentHashMap相比HashMap而言,是多线程安全的,其底层数据与HashMap的数据结构相同,数据结构如下:

  技术图片

ConcurrentHashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树是为了提高查找效率。

ConcurrentHashMap为什么高效?

JDK1.5中的实现

ConcurrentHashMap使用的是分段锁技术,将ConcurrentHashMap将锁一段一段的存储,然后给每一段数据配一把锁(segment),当一个线程占用一把锁(segment)访问其中一段数据的时候,其他段的数据也能被其它的线程访问,默认分配16个segment。默认比Hashtable效率提高16倍。

ConcurrentHashMap的结构图如下(网友贡献的图,哈):


 
技术图片
Paste_Image.png

JDK1.8中的实现

ConcurrentHashMap取消了segment分段锁,而采用CAS和synchronized来保证并发安全。数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树
synchronized只锁定当前链表或红黑二叉树的首节点,这样只要hash不冲突,就不会产生并发,效率又提升N倍。

JDK1.8的ConcurrentHashMap的结构图如下:

 
技术图片
Paste_Image.png

TreeBin: 红黑二叉树节点
Node: 链表节点

ConcurrentHashMap 源码分析

ConcurrentHashMap 类结构参照HashMap,这里列出HashMap没有的几个属性。

/**
     * Table initialization and resizing control.  When negative, the
     * table is being initialized or resized: -1 for initialization,
     * else -(1 + the number of active resizing threads).  Otherwise,
     * when table is null, holds the initial table size to use upon
     * creation, or 0 for default. After initialization, holds the
     * next element count value upon which to resize the table.
     hash表初始化或扩容时的一个控制位标识量。
     负数代表正在进行初始化或扩容操作
     -1代表正在初始化
     -N 表示有N-1个线程正在进行扩容操作
     正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
     */
    private transient volatile int sizeCtl; 
    // 以下两个是用来控制扩容的时候 单线程进入的变量
    /**
     * The number of bits used for generation stamp in sizeCtl.
     * Must be at least 6 for 32bit arrays.
     */
    private static int RESIZE_STAMP_BITS = 16;
    /**
     * The bit shift for recording size stamp in sizeCtl.
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
    
    
    /*
     * Encodings for Node hash fields. See above for explanation.
     */
    static final int MOVED     = -1; // hash值是-1,表示这是一个forwardNode节点
    static final int TREEBIN   = -2; // hash值是-2  表示这时一个TreeBin节点

分析代码主要目的:分析是如果利用CAS和Synchronized进行高效的同步更新数据。
下面插入数据源码:

public V put(K key, V value) {
    return putVal(key, value, false);
}

    /** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //ConcurrentHashMap 不允许插入null键,HashMap允许插入一个null键
    if (key == null || value == null) throw new NullPointerException();
    //计算key的hash值
    int hash = spread(key.hashCode());
    int binCount = 0;
    //for循环的作用:因为更新元素是使用CAS机制更新,需要不断的失败重试,直到成功为止。
    for (Node<K,V>[] tab = table;;) {
        // f:链表或红黑二叉树头结点,向链表中添加元素时,需要synchronized获取f的锁。
        Node<K,V> f; int n, i, fh;
        //判断Node[]数组是否初始化,没有则进行初始化操作
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //通过hash定位Node[]数组的索引坐标,是否有Node节点,如果没有则使用CAS进行添加(链表的头结点),添加失败则进入下次循环。
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //检查到内部正在移动元素(Node[] 数组扩容)
        else if ((fh = f.hash) == MOVED)
            //帮助它扩容
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //锁住链表或红黑二叉树的头结点
            synchronized (f) {
                //判断f是否是链表的头结点
                if (tabAt(tab, i) == f) {
                    //如果fh>=0 是链表节点
                    if (fh >= 0) {
                        binCount = 1;
                        //遍历链表所有节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //如果节点存在,则更新value
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            //不存在则在链表尾部添加新节点。
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //TreeBin是红黑二叉树节点
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        //添加树节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                      value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            
            if (binCount != 0) {
                //如果链表长度已经达到临界值8 就需要把链表转换为树结构
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    //将当前ConcurrentHashMap的size数量+1
    addCount(1L, binCount);
    return null;
}
  1. 判断Node[]数组是否初始化,没有则进行初始化操作
  2. 通过hash定位Node[]数组的索引坐标,是否有Node节点,如果没有则使用CAS进行添加(链表的头结点),添加失败则进入下次循环。
  3. 检查到内部正在扩容,如果正在扩容,就帮助它一块扩容。
  4. 如果f!=null,则使用synchronized锁住f元素(链表/红黑二叉树的头元素)
    4.1 如果是Node(链表结构)则执行链表的添加操作。
    4.2 如果是TreeNode(树型结果)则执行树添加操作。
  5. 判断链表长度已经达到临界值8 就需要把链表转换为树结构。

总结:
    JDK8中的实现也是锁分离的思想,它把锁分的比segment(JDK1.5)更细一些,只要hash不冲突,就不会出现并发获得锁的情况。它首先使用无锁操作CAS插入头结点,如果插入失败,说明已经有别的线程插入头结点了,再次循环进行操作。如果头结点已经存在,则通过synchronized获得头结点锁,进行后续的操作。性能比segment分段锁又再次提升。

 

其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树。

 

  •  CopyOnWrite

  • BlockingQueue

  1. LinkedBlockingQueue

  2. ArrayBlockingQueue

  • DelayQueue

  • SychronousQUeue

  • TransferQueue

以上是关于多线程与并发6 并发容器的主要内容,如果未能解决你的问题,请参考以下文章

Java 多线程 8同步容器与并发容器

Java并发多线程编程——同步容器与并发容器

Java并发多线程编程——同步容器与并发容器

Java多线程与并发库高级应用-工具类介绍

Java多线程与并发库高级应用-工具类介绍

多线程与高并发基础三