梯度下降法和随机梯度下降法的区别

Posted ph-one

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了梯度下降法和随机梯度下降法的区别相关的知识,希望对你有一定的参考价值。

梯度下降和随机梯度下降之间的关键区别:
  1、标准梯度下降是在权值更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个训练样例来更新的。
  2、在标准梯度下降中,权值更新的每一步对多个样例求和,需要更多的计算。
  3、标准梯度下降,由于使用真正的梯度,标准梯度下降对于每一次权值更新经常使用比随机梯度下降大的步长。
  4、如果标准误差曲面有多个局部极小值,随机梯度下降有时可能避免陷入这些局部极小值中。

  相关知识:
  1、梯度下降法是一个最优化算法,通常也称为最速下降法最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。
  缺点:
  (1)靠近极小值时收敛速度减慢。
  (2)直线搜索时可能会产生一些问题。
  (3)可能会“之字形”地下降。
  2、随机并行梯度下降算法,简称SPGD算法。作为一种无模型优化算法,比较适用于控制变量较多,受控系统比较复杂,无法建立准确数学模型的最优化控制过程。

以上是关于梯度下降法和随机梯度下降法的区别的主要内容,如果未能解决你的问题,请参考以下文章

为啥随机梯度下降方法能够收敛

GBDT与xgb区别,以及梯度下降法和牛顿法的数学推导

梯度下降法和粒子群优化算法的区别

机器学习中梯度下降法和牛顿法的比较

广义最小残差法和共轭梯度法的区别

梯度下降法和牛顿法的总结与比较