单神经元的神经网络基本算法
Posted wang2804355025
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了单神经元的神经网络基本算法相关的知识,希望对你有一定的参考价值。
假设条件:我们有m个样本,每个样本有n个特征。我们的目的是通过神经网络的训练,使模型能够识别每张图片是否是指定的图像。
首先每个样本有n个特征值,我们的最终模型需要包含n个w,1个b。模型通过公式temp=wx,计算每一个特征值的temp的值,最后累加,这里的每个x特征值都对应一个自己的w。最后加上一个通用的b,得到Z。最后通过激活函数,得出最终的判定结果A。这里的A的值可能因为激活函数不同而改变。
以上是神经网络对该样本的判定过程,那么怎么训练呢?
我们首先给所有的w赋初值。然后对于每一个特征值的w,通过公式w=w-r*(x*(a-y))进行梯度下降,公式里的r是学习率,x是该特征的特征值,a是模型当前的预测结果,y是正确结果。同样的道理b=b-r*(a-y)进行梯度下降。
通过一遍遍的前向传播和反向传播,不断更新w和b,最终得到的w和b参数配合激活函数已经能预测样本了。
以上是关于单神经元的神经网络基本算法的主要内容,如果未能解决你的问题,请参考以下文章
[时间序列预测]基于BPLSTMCNN-LSTM神经网络算法的单特征用电负荷预测[保姆级手把手教学]
电力负荷预测基于matlab遗传算法优化BP神经网络电力负荷预测含Matlab源码 1524期