FZU1683 纪念SlingShot
Posted dlvguo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FZU1683 纪念SlingShot相关的知识,希望对你有一定的参考价值。
Problem Description 题目链接
已知 F(n)=3 * F(n-1)+2 * F(n-2)+7 * F(n-3),n>=3,其中F(0)=1,F(1)=3,F(2)=5,对于给定的每个n,输出F(0)+ F(1)+ …… + F(n) mod 2009。
Input
第一行是一整数m,代表总共有m个cases。
Output
对于每个case,输出一行。格式见样例,冒号后有一个空格。
Sample Input
2 3 6
Sample Output
Case 1: 37
Case 2: 313
#include <iostream> #include <stdio.h> #include <cstring> using namespace std; /* 矩阵快速幂问题,重点是找到矩阵 Sn=Sn-1+f(n)=Sn-1+3*f(n-1)+2*f(n-2)+7*f(n-3) Base:Sn | 1 1 0 0 | Sn-1 f(n+1) | 0 3 2 7 | f(n) f(n) | 0 1 0 0 | f(n-1) f(n-1) | 0 0 0 1 | f(n-2) Ori:S2 | 4 0 0 0 | f(2) | 5 0 0 0 | f(1) | 3 0 0 0 | f(0) | 1 0 0 0 | */ struct Matrix { int m[5][5]; Matrix() { memset(m, 0, sizeof(m)); } //初始化特征矩阵 void init() { m[1][1] = 1; m[1][2] = 1; m[2][2] = 3; m[2][3] = 2; m[2][4] = 7; m[3][2] = 1; m[4][3] = 1; } //单位化 void unit() { for (int i = 1; i <= 4; i++) { m[i][i] = 1; } } }; //矩阵相乘 Matrix mul(Matrix a, Matrix b) { Matrix c; for (int i = 1; i <= 4; i++) { for (int j = 1; j <= 4; j++) { for (int k = 1; k <= 4; k++) { c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % 2009; } } } return c; } //计算矩阵n次方 Matrix pow(int n) { Matrix res; Matrix mt; mt.init(); //化成单位矩阵 res.unit(); while (n) { if (n & 1) res = mul(res, mt); mt = mul(mt, mt); n = n >> 1; } return res; } int main() { int m, n, c = 1, ans; cin >> m; //初始矩阵 Matrix oriM; oriM.m[1][1] = 4; oriM.m[2][1] = 5; oriM.m[3][1] = 3; oriM.m[4][1] = 1; while (m--) { cin >> n; if (n == 0) { ans = 1; } else { Matrix p = mul(pow(n - 1), oriM); ans = p.m[1][1]; } printf("Case %d: %d ", c++, ans); } }
参考链接:https://blog.csdn.net/weixin_34221276/article/details/86129443
以上是关于FZU1683 纪念SlingShot的主要内容,如果未能解决你的问题,请参考以下文章
在通过 slingshot 上传之前使用 Meteor js 中的 Cropit 进行图像裁剪
luogu4088 [USACO18FEB]Slingshot