Spring面试总结

Posted 黄小斜

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spring面试总结相关的知识,希望对你有一定的参考价值。

原文出处http://cmsblogs.com/ 『chenssy

到目前为止,我们在Java世界里看到了两种实现key-value的数据结构:Hash、TreeMap,这两种数据结构各自都有着优缺点。

  1. Hash表:插入、查找最快,为O(1);如使用链表实现则可实现无锁;数据有序化需要显式的排序操作。
  2. 红黑树:插入、查找为O(logn),但常数项较小;无锁实现的复杂性很高,一般需要加锁;数据天然有序。

然而,这次介绍第三种实现key-value的数据结构:SkipList。SkipList有着不低于红黑树的效率,但是其原理和实现的复杂度要比红黑树简单多了。

SkipList

什么是SkipList?Skip List ,称之为跳表,它是一种可以替代平衡树的数据结构,其数据元素默认按照key值升序,天然有序。Skip list让已排序的数据分布在多层链表中,以0-1随机数决定一个数据的向上攀升与否,通过“空间来换取时间”的一个算法,在每个节点中增加了向前的指针,在插入、删除、查找时可以忽略一些不可能涉及到的结点,从而提高了效率。

我们先看一个简单的链表,如下:

 

如果我们需要查询9、21、30,则需要比较次数为3 + 6 + 8 = 17 次,那么有没有优化方案呢?有!我们将该链表中的某些元素提炼出来作为一个比较“索引”,如下:

 

我们先与这些索引进行比较来决定下一个元素是往右还是下走,由于存在“索引”的缘故,导致在检索的时候会大大减少比较的次数。当然元素不是很多,很难体现出优势,当元素足够多的时候,这种索引结构就会大显身手。

SkipList的特性

SkipList具备如下特性:

  1. 由很多层结构组成,level是通过一定的概率随机产生的
  2. 每一层都是一个有序的链表,默认是升序,也可以根据创建映射时所提供的Comparator进行排序,具体取决于使用的构造方法
  3. 最底层(Level 1)的链表包含所有元素
  4. 如果一个元素出现在Level i 的链表中,则它在Level i 之下的链表也都会出现
  5. 每个节点包含两个指针,一个指向同一链表中的下一个元素,一个指向下面一层的元素

我们将上图再做一些扩展就可以变成一个典型的SkipList结构了

 

SkipList的查找

SkipListd的查找算法较为简单,对于上面我们我们要查找元素21,其过程如下:

  1. 比较3,大于,往后找(9),
  2. 比9大,继续往后找(25),但是比25小,则从9的下一层开始找(16)
  3. 16的后面节点依然为25,则继续从16的下一层找
  4. 找到21

如图

 

红色虚线代表路径。

SkipList的插入

SkipList的插入操作主要包括:

  1. 查找合适的位置。这里需要明确一点就是在确认新节点要占据的层次K时,采用丢硬币的方式,完全随机。如果占据的层次K大于链表的层次,则重新申请新的层,否则插入指定层次
  2. 申请新的节点
  3. 调整指针

假定我们要插入的元素为23,经过查找可以确认她是位于25后,9、16、21前。当然需要考虑申请的层次K。

如果层次K > 3

需要申请新层次(Level 4)

 

如果层次 K = 2

直接在Level 2 层插入即可

 

这里会涉及到以个算法:通过丢硬币决定层次K,该算法我们通过后面ConcurrentSkipListMap源码来分析。还有一个需要注意的地方就是,在K层插入元素后,需要确保所有小于K层的层次都应该出现新节点。

SkipList的删除

删除节点和插入节点思路基本一致:找到节点,删除节点,调整指针。

比如删除节点9,如下:

 

ConcurrentSkipListMap

通过上面我们知道SkipList采用空间换时间的算法,其插入和查找的效率O(logn),其效率不低于红黑树,但是其原理和实现的复杂度要比红黑树简单多了。一般来说会操作链表List,就会对SkipList毫无压力。

ConcurrentSkipListMap其内部采用SkipLis数据结构实现。为了实现SkipList,ConcurrentSkipListMap提供了三个内部类来构建这样的链表结构:Node、Index、HeadIndex。其中Node表示最底层的单链表有序节点、Index表示为基于Node的索引层,HeadIndex用来维护索引层次。到这里我们可以这样说ConcurrentSkipListMap是通过HeadIndex维护索引层次,通过Index从最上层开始往下层查找,一步一步缩小查询范围,最后到达最底层Node时,就只需要比较很小一部分数据了。在JDK中的关系如下图:

 

** Node **

    static final class Node<K,V> {
        final K key;
        volatile Object value;
        volatile ConcurrentSkipListMap.Node<K, V> next;
        
        /** 省略些许代码 */
    }static final class Node<K,V> {
        final K key;
        volatile Object value;
        volatile ConcurrentSkipListMap.Node<K, V> next;
        
        /** 省略些许代码 */
    }

Node的结构和一般的单链表毫无区别,key-value和一个指向下一个节点的next。

Index

    static class Index<K,V> {
        final ConcurrentSkipListMap.Node<K,V> node;
        final ConcurrentSkipListMap.Index<K,V> down;
        volatile ConcurrentSkipListMap.Index<K,V> right;

        /** 省略些许代码 */
    }static class Index<K,V> {
        final ConcurrentSkipListMap.Node<K,V> node;
        final ConcurrentSkipListMap.Index<K,V> down;
        volatile ConcurrentSkipListMap.Index<K,V> right;

        /** 省略些许代码 */
    }

Index提供了一个基于Node节点的索引Node,一个指向下一个Index的right,一个指向下层的down节点。

HeadIndex

    static final class HeadIndex<K,V> extends Index<K,V> {
        final int level;  //索引层,从1开始,Node单链表层为0
        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
            super(node, down, right);
            this.level = level;
        }
    }static final class HeadIndex<K,V> extends Index<K,V> {
        final int level;  //索引层,从1开始,Node单链表层为0
        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
            super(node, down, right);
            this.level = level;
        }
    }

HeadIndex内部就一个level来定义层级。

ConcurrentSkipListMap提供了四个构造函数,每个构造函数都会调用initialize()方法进行初始化工作。

    final void initialize() {
        keySet = null;
        entrySet = null;
        values = null;
        descendingMap = null;
        randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
        head = new ConcurrentSkipListMap.HeadIndex<K,V>(new ConcurrentSkipListMap.Node<K,V>(null, BASE_HEADER, null),
                null, null, 1);
    }final void initialize() {
        keySet = null;
        entrySet = null;
        values = null;
        descendingMap = null;
        randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
        head = new ConcurrentSkipListMap.HeadIndex<K,V>(new ConcurrentSkipListMap.Node<K,V>(null, BASE_HEADER, null),
                null, null, 1);
    }

注意,initialize()方法不仅仅只在构造函数中被调用,如clone,clear、readObject时都会调用该方法进行初始化步骤。这里需要注意randomSeed的初始化。

 private transient int randomSeed;
 randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzeroprivate transient int randomSeed;
 randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero

randomSeed一个简单的随机数生成器(在后面介绍)。

put操作

CoucurrentSkipListMap提供了put()方法用于将指定值与此映射中的指定键关联。源码如下:

    public V put(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, false);
    }public V put(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, false);
    }

首先判断value如果为null,则抛出NullPointerException,否则调用doPut方法,其实如果各位看过JDK的源码的话,应该对这样的操作很熟悉了,JDK源码里面很多方法都是先做一些必要性的验证后,然后通过调用do**()方法进行真正的操作。

doPut()方法内容较多,我们分步分析。

    private V doPut(K key, V value, boolean onlyIfAbsent) {
        Node<K,V> z;             // added node
        if (key == null)
            throw new NullPointerException();
        // 比较器
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            for (Node<K, V> b = findPredecessor(key, cmp), n = b.next; ; ) {

            /** 省略代码 */private V doPut(K key, V value, boolean onlyIfAbsent) {
        Node<K,V> z;             // added node
        if (key == null)
            throw new NullPointerException();
        // 比较器
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            for (Node<K, V> b = findPredecessor(key, cmp), n = b.next; ; ) {

            /** 省略代码 */

doPut()方法有三个参数,除了key,value外还有一个boolean类型的onlyIfAbsent,该参数作用与如果存在当前key时,该做何动作。当onlyIfAbsent为false时,替换value,为true时,则返回该value。用代码解释为:

   if (!map.containsKey(key))
      return map.put(key, value);
  else
       return map.get(key);if (!map.containsKey(key))
      return map.put(key, value);
  else
       return map.get(key);

首先判断key是否为null,如果为null,则抛出NullPointerException,从这里我们可以确认ConcurrentSkipList是不支持key或者value为null的。然后调用findPredecessor()方法,传入key来确认位置。findPredecessor()方法其实就是确认key要插入的位置。

   private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
        if (key == null)
            throw new NullPointerException(); // don't postpone errors
        for (;;) {
            // 从head节点开始,head是level最高级别的headIndex
            for (Index<K,V> q = head, r = q.right, d;;) {

                // r != null,表示该节点右边还有节点,需要比较
                if (r != null) {
                    Node<K,V> n = r.node;
                    K k = n.key;
                    // value == null,表示该节点已经被删除了
                    // 通过unlink()方法过滤掉该节点
                    if (n.value == null) {
                        //删掉r节点
                        if (!q.unlink(r))
                            break;           // restart
                        r = q.right;         // reread r
                        continue;
                    }

                    // value != null,节点存在
                    // 如果key 大于r节点的key 则往前进一步
                    if (cpr(cmp, key, k) > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }

                // 到达最右边,如果dowm == null,表示指针已经达到最下层了,直接返回该节点
                if ((d = q.down) == null)
                    return q.node;
                q = d;
                r = d.right;
            }
        }
    }private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
        if (key == null)
            throw new NullPointerException(); // don't postpone errors
        for (;;) {
            // 从head节点开始,head是level最高级别的headIndex
            for (Index<K,V> q = head, r = q.right, d;;) {

                // r != null,表示该节点右边还有节点,需要比较
                if (r != null) {
                    Node<K,V> n = r.node;
                    K k = n.key;
                    // value == null,表示该节点已经被删除了
                    // 通过unlink()方法过滤掉该节点
                    if (n.value == null) {
                        //删掉r节点
                        if (!q.unlink(r))
                            break;           // restart
                        r = q.right;         // reread r
                        continue;
                    }

                    // value != null,节点存在
                    // 如果key 大于r节点的key 则往前进一步
                    if (cpr(cmp, key, k) > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }

                // 到达最右边,如果dowm == null,表示指针已经达到最下层了,直接返回该节点
                if ((d = q.down) == null)
                    return q.node;
                q = d以上是关于Spring面试总结的主要内容,如果未能解决你的问题,请参考以下文章

经验总结:Java高级工程师面试题-字节跳动,成功跳槽阿里!

Servlet和Spring的面试总结

Servlet和Spring的面试总结

Servlet和Spring的面试总结

9月16号面试总结(nantian)

Spring MVC 面试总结