开展论文研究——推荐系统

Posted qiezi-online

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了开展论文研究——推荐系统相关的知识,希望对你有一定的参考价值。

再一次阅读了何向南教授在2017WWW上发的论文:Neural Collaborative Filtering,原文链接:https://www.comp.nus.edu.sg/~xiangnan/papers/ncf.pdf

本人读英文还是很不流畅,读原文时容易走神或者是对文中内容一知半解。有幸找到两篇好的网上翻译,仅供参考:

全文翻译:https://www.cnblogs.com/HolyShine/p/6728999.html

论文大纲:https://www.jianshu.com/p/0fb830696a1c

部分术语解读:https://blog.csdn.net/stalbo/article/details/79431662

 

个人感悟:

1.本文研究核心重点在于,隐式数据的研究。所谓隐式数据,就是用户的交互数据,如评论历史,购买历史,浏览记录,搜索记录等。显式数据,如打分数据。而在实际生活例子中,很多隐式数据的应用,比如电子商城中的浏览或购买记录,某音乐app中的评论等。所以,个人认为这是一个很好的切入点。更多有关隐式数据的研究,可以参见原文Part 5, Related Work, 以及附录中相关研究。可以顺着该思路,研究下去。

 

2.原文写的很完整,评测指标,研究现状,实验对比等等。并且数据有公开数据集,作者也公开了github源码。

 

3.传统的协同过滤方法用的很多了,再者就是MF(matrix factorization,矩阵分解)方法,本文再进一步融合了MF和DNN方法,效果有没有提升呢?自己可以亲自动手验证一下哦。改进的方法,是不是能够做到更好的推荐效果呢?是否能更好的识别用户的兴趣呢?可以实践且深挖一下。

以上是关于开展论文研究——推荐系统的主要内容,如果未能解决你的问题,请参考以下文章

基于元学习的推荐系统5篇相关论文

最新最全推荐系统相关优秀研究论文整理分享

推荐系统论文阅读(二十九)-美团:利用历史交互数据改进对话推荐系统

论文研读1.1 基于 DeepFM 模型的广告推荐系统研究(郁等)

近期必读六篇 ICLR 2021推荐系统 相关投稿论文

近期必读的六篇 ICLR 2021推荐系统相关投稿论文