JDK1.8新特性Stream和Collectors19个常用示例总结
Posted diandianquanquan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JDK1.8新特性Stream和Collectors19个常用示例总结相关的知识,希望对你有一定的参考价值。
关于Stream和Collectors的用法,这应该是总结的最全的文章了,大家可以收藏一下。
一:简介
java.util.Stream 表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样就可以将多个操作依次串起来。Stream 的创建需要指定一个数据源,比如 java.util.Collection的子类,List或者Set, Map不支持。Stream的操作可以串行stream()执行或者并行parallelStream()执行。
二:示例
forEach 循环
@Test public void forEach(){ // 你不鸟我,我也不鸟你 List<String> list = Arrays.asList("you", "don‘t", "bird", "me", ",", "I", "don‘t", "bird", "you"); // 方式一:JDK1.8之前的循环方式 for (String item: list) { System.out.println(item); } // 方式二:使用Stream的forEach方法 // void forEach(Consumer<? super T> action) list.stream().forEach(item -> System.out.println(item)); // 方式三:方式二的简化方式 // 由于方法引用也属于函数式接口,所以方式二Lambda表达式也可以使用方法引用来代替 // 此种方式就是方式一、方式二的简写形式 list.stream().forEach(System.out::println); }
filter 过滤
public class User { private Long id; private String phone; private Integer age; public User(){} public User(Long id, String username, Integer age) { this.id = id; this.username = username; this.age = age; } // Getter & Setter & toString } @Test public void filter(){ List<User> users = Arrays.asList( new User(1L, "mengday", 28), new User(2L, "guoguo", 18), new User(3L, "liangliang", 17) ); // Stream<T> filter(Predicate<? super T> predicate); users.stream().filter(user -> user.getAge() > 18).forEach(System.out::println); }
map 映射
@Test public void map(){ List<String> list = Arrays.asList("how", "are", "you", "how", "old", "are", "you", "?"); // <R> Stream<R> map(Function<? super T, ? extends R> mapper); list.stream().map(item -> item.toUpperCase()).forEach(System.out::println); }
flatMap
@Test public void flatMap(){ List<Integer> a = Arrays.asList(1, 2, 3); List<Integer> b = Arrays.asList(4, 5, 6); // <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper) List<List<Integer>> collect = Stream.of(a, b).collect(Collectors.toList()); // [[1, 2, 3], [4, 5, 6]] System.out.println(collect); // 将多个集合中的元素合并成一个集合 List<Integer> mergeList = Stream.of(a, b).flatMap(list -> list.stream()).collect(Collectors.toList()); // [1, 2, 3, 4, 5, 6] System.out.println(mergeList); // 通过Builder模式来构建 Stream<Object> stream = Stream.builder().add("hello").add("hi").add("byebye").build(); }
sorted 排序
@Test public void sort(){ List<String> list = Arrays.asList("c", "e", "a", "d", "b"); // Stream<T> sorted(Comparator<? super T> comparator); // int compare(T o1, T o2); list.stream().sorted((s1, s2) -> s1.compareTo(s2)).forEach(System.out::println); }
distinct 去重复
@Test public void distinct(){ // 知之为知之,不知为不知 Stream<String> stream = Stream.of("know", "is", "know", "noknow", "is", "noknow"); stream.distinct().forEach(System.out::println); // know is noknow }
count 总数量
@Test public void count(){ Stream<String> stream = Stream.of("know", "is", "know", "noknow", "is", "noknow"); long count = stream.count(); System.out.println(count); }
min、max
@Test public void min(){ List<String> list = Arrays.asList("1", "2", "3", "4", "5"); // Optional<T> min(Comparator<? super T> comparator); Optional<String> optional = list.stream().min((a, b) -> a.compareTo(b)); String value = optional.get(); System.out.println(value); }
skip、limit
@Test public void skip(){ List<String> list = Arrays.asList("a", "b", "c", "d", "e"); // Stream<T> skip(long n) list.stream().skip(2).forEach(System.out::println); // c、d、e } @Test public void limit(){ List<String> list = Arrays.asList("a", "b", "c", "d", "e"); list.stream().skip(2).limit(2).forEach(System.out::println); // c、d }
collect
@Test public void collect(){ List<String> list = Arrays.asList("a", "b", "c", "d", "e"); // Stream -> Collection List<String> collect = list.stream().collect(Collectors.toList()); // Stream -> Object[] Object[] objects = list.stream().toArray(); }
concat
@Test public void concat(){ List<String> list = Arrays.asList("a", "b"); List<String> list2 = Arrays.asList("c", "d"); Stream<String> concatStream = Stream.concat(list.stream(), list2.stream()); concatStream.forEach(System.out::println); }
anyMatch、allMatch
@Test public void match(){ // 你给我站住 List<String> list = Arrays.asList("you", "give", "me", "stop"); // boolean anyMatch(Predicate<? super T> predicate); // parallelStream可以并行计算,速度比stream更快 boolean result = list.parallelStream().anyMatch(item -> item.equals("me")); System.out.println(result); } /** * anyMatch伪代码 * 如果集合中有一个元素满足条件就返回true * @return */ public boolean anyMatch() { List<String> list = Arrays.asList("you", "give", "me", "stop"); for (String item : list) { if (item.equals("me")) { return true; } } return false; }
reduce 归纳
@Test public void reduce(){ Stream<String> stream = Stream.of("you", "give", "me", "stop"); // Optional<T> reduce(BinaryOperator<T> accumulator); Optional<String> optional = stream.reduce((before, after) -> before + "," + after); optional.ifPresent(System.out::println); // you,give,me,stop }
findFirst、findAny
@Test public void findFirst(){ Stream<String> stream = Stream.of("you", "give", "me", "stop"); String value = stream.findFirst().get(); System.out.println(value); } @Test public void findAny(){ Stream<String> stream = Stream.of("you", "give", "me", "stop"); String value2 = stream.findAny().get(); System.out.println(value2); }
流转换成集合
@Test public void testToCollection(){ List<Integer> list = Arrays.asList(1, 2, 3); // [10, 20, 30] List<Integer> collect = list.stream().map(i -> i * 10).collect(Collectors.toList()); // [20, 10, 30] Set<Integer> collect1 = list.stream().map(i -> i * 10).collect(Collectors.toSet()); // {key1=value:10, key2=value:20, key3=value:30} Map<String, String> collect2 = list.stream().map(i -> i * 10).collect(Collectors.toMap(key -> "key" + key/10, value -> "value:" + value)); // [1, 3, 4] TreeSet<Integer> collect3= Stream.of(1, 3, 4).collect(Collectors.toCollection(TreeSet::new)); } @Data @ToString @AllArgsConstructor @RequiredArgsConstructor public class User { private Long id; private String username; } @Test public void testToMap() { List<User> userList = Arrays.asList( new User(1L, "mengday"), new User(2L, "mengdee"), new User(3L, "mengdy") ); // toMap 可用于将List转为Map,便于通过key快速查找到某个value Map<Long, User> userIdAndModelMap = userList.stream().collect(Collectors.toMap(User::getId, Function.identity())); User user = userIdAndModelMap.get(1L); // User(id=1, username=mengday) System.out.println(user); Map<Long, String> userIdAndUsernameMap = userList.stream().collect(Collectors.toMap(User::getId, User::getUsername)); String username = userIdAndUsernameMap.get(1L); // mengday System.out.println(username); }
集合元素拼接
@Test public void testJoining(){ // a,b,c List<String> list2 = Arrays.asList("a", "b", "c"); String result = list2.stream().collect(Collectors.joining(",")); // Collectors.joining(",")的结果是:a,b,c 然后再将结果 x + "d"操作, 最终返回a,b,cd String str= Stream.of("a", "b", "c").collect(Collectors.collectingAndThen(Collectors.joining(","), x -> x + "d")); }
元素聚合
@Test public void test(){ // 求最值 3 List<Integer> list = Arrays.asList(1, 2, 3); Integer maxValue = list.stream().collect(Collectors.collectingAndThen(Collectors.maxBy((a, b) -> a - b), Optional::get)); // 最小值 1 Integer minValue = list.stream().collect(Collectors.collectingAndThen(Collectors.minBy((a, b) -> a - b), Optional::get)); // 求和 6 Integer sumValue = list.stream().collect(Collectors.summingInt(item -> item)); // 平均值 2.0 Double avg = list.stream().collect(Collectors.averagingDouble(x -> x)); } @Test public void test(){ // 映射:先对集合中的元素进行映射,然后再对映射的结果使用Collectors操作 // A,B,C Stream.of("a", "b", "c").collect(Collectors.mapping(x -> x.toUpperCase(), Collectors.joining(","))); }
分组
public class User { private Long id; private String username; private Integer type; // Getter & Setter & toString } @Test public void testGroupBy(){ List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); // 奇偶数分组:奇数分一组,偶数分一组 // groupingBy(Function<? super T, ? extends K> classifier) 参数是Function类型,Function返回值可以是要分组的条件,也可以是要分组的字段 // 返回的结果是Map,其中key的数据类型为Function体中计算类型,value是List<T>类型,为分组的结果 Map<Boolean, List<Integer>> result = list.stream().collect(Collectors.groupingBy(item -> item % 2 == 0)); // {false=[1, 3, 5, 7, 9], true=[2, 4, 6, 8, 10]} System.out.println(result); // partitioningBy 用于分成两组的情况 Map<Boolean, List<Integer>> twoPartiton = list.stream().collect(Collectors.partitioningBy(item -> item % 2 == 0)); System.out.println(twoPartiton); User user = new User(1L, "zhangsan", 1); User user2 = new User(2L, "lisi", 2); User user3 = new User(3L, "wangwu", 3); User user4 = new User(4L, "fengliu", 1); List<User> users = Arrays.asList(user, user2, user3, user4); // 根据某个字段进行分组 Map<Integer, List<User>> userGroup = users.stream().collect(Collectors.groupingBy(item -> item.type)); /** * key 为要分组的字段 * value 分组的结果 * { * 1=[User{id=1, username=‘zhangsan‘, type=1}, User{id=4, username=‘fengliu‘, type=1}], * 2=[User{id=2, username=‘lisi‘, type=2}], * 3=[User{id=3, username=‘wangwu‘, type=3}] * } */ System.out.println(userGroup); } // 分组并对分组中的数据统计 @Test public void testGroupBy2() { Foo foo1 = new Foo(1, 2); Foo foo2 = new Foo(2, 23); Foo foo3 = new Foo(2, 6); List<Foo> list = new ArrayList<>(4); list.add(foo1); list.add(foo2); list.add(foo3); Map<Integer, IntSummaryStatistics> collect = list.stream().collect(Collectors.groupingBy(Foo::getCode, Collectors.summarizingInt(Foo::getCount))); IntSummaryStatistics statistics1 = collect.get(1); IntSummaryStatistics statistics2 = collect.get(2); System.out.println(statistics1.getSum()); System.out.println(statistics1.getAverage()); System.out.println(statistics1.getMax()); System.out.println(statistics1.getMin()); System.out.println(statistics1.getCount()); System.out.println(statistics2.getSum()); System.out.println(statistics2.getAverage()); System.out.println(statistics2.getMax()); System.out.println(statistics2.getMin()); System.out.println(statistics2.getCount()); }
累计操作
@Test public void testReducing(){ // sum: 是每次累计计算的结果,b是Function的结果 System.out.println(Stream.of(1, 3, 4).collect(Collectors.reducing(0, x -> x + 1, (sum, b) -> { System.out.println(sum + "-" + b); return sum + b; }))); // 下面代码是对reducing函数功能实现的描述,用于理解reducing的功能 int sum = 0; List<Integer> list3 = Arrays.asList(1, 3, 4); for (Integer item : list3) { int b = item + 1; System.out.println(sum + "-" + b); sum = sum + b; } System.out.println(sum); // 注意reducing可以用于更复杂的累计计算,加减乘除或者更复杂的操作 // result = 2 * 4 * 5 = 40 System.out.println(Stream.of(1, 3, 4).collect(Collectors.reducing(1, x -> x + 1, (result, b) -> { System.out.println(result + "-" + b); return result * b; }))); }
转自:https://www.toutiao.com/i6817403401467331076/?tt_from=weixin&utm_campaign=client_share&wxshare_count=1×tamp=1588570797&app=news_article&utm_source=weixin&utm_medium=toutiao_android&req_id=202005041339560101300361644B5CD9AD&group_id=6817403401467331076
以上是关于JDK1.8新特性Stream和Collectors19个常用示例总结的主要内容,如果未能解决你的问题,请参考以下文章