基于模糊集图像分割的人脸美颜

Posted hichens

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于模糊集图像分割的人脸美颜相关的知识,希望对你有一定的参考价值。

概览

  • 基于模糊集二值分割
    • 对比ostu等其他方法
  • 模糊集图像聚类-FCM
    • 对比KMeans聚类
  • 结合模糊集图像分割的
  • 总结

摘要

模糊集理论,也称为模糊集合论,或简单地称为模糊集,1965年美国学者扎德在数学上创立了一种描述模糊现象的方法—模糊集合论。这种方法把待考察的对象及反映它的模糊概念作为一定的模糊集合,建立适当的隶属函数,通过模糊集合的有关运算和变换,对模糊对象进行分析。模糊集合论以模糊数学为基础,研究有关非精确的现象。客观世界中,大量存在着许多亦此亦彼的模糊现象。本文研究了基于模糊集图像分割在人脸美颜上的应用。要对人脸进行美颜,前提是要准确的定位到准确的部位,然后通过图像处理,得到想要的结果。本文先介绍了基于模糊集的二值分割和聚类,再介绍了如何将基于模糊集图像分割的方法应用到人脸美颜中。
关键词(模糊集quad 二值分割quad 聚类分割 quad 人脸美颜)

模糊集二值分割

该算法是清华大学黄良凯(Liang-kai Huang) 所提出来的[1],因此国外一些论文里和代码里称之为Huang‘s fuzzy thresholding method。该论文结合了当时处于研究热潮的模糊集理论,提出了一种具有较好效果的图像二值化算法。

模糊集及其隶属度函数

设X代表一副大小为M×N的具有L个色阶的灰度图像,而(X_{mn})代表图像X中点(m, n)处的像素灰度值,定义(mu_X(x_{mn}))表示该点具有某种属性的隶属度值,也就是说我们定义了一个从图像X映射到[0,1]区间的模糊子集,用模糊集表达,即有:

[X = left { x_{mn}, mu_X(x_{mn}) ight } quadquad (1.1) ]

其中 (0≤mu_X(x_{mn})≤1, m=0,1,...M-1, n=0,1,...N-1)。对于二值化来说,每个像素对于其所属的类别(前景或背景)都应该有很相近的关系,因此,我们可以这种关系来表示(mu_X(x_{mn}))的值。
定义H(g)表示图像中具有灰度级g的像素的个数,对于一个给定的阈值t,背景和前景各自色阶值的平均值(mu_0)(mu_1)可用下式表示:

[mu_0 = frac{sum_{g=0}^{t}g H(g)}{sum_{g=0}^{t}H(g)} quadquad (1.2) mu_1 = frac{sum_{g=t+1}^{L-1}g H(g)}{sum_{g=t+1}^{L-1}H(g)} quadquad (1.3) ]

其中, L是色阶,一般的,取L=256。
上述(mu_0)(mu_1),可以看成是指定阈值t所对应的前景和背景的目标值,而图像X中某一点和其所述的区域之间的关系,在直觉上应该和该点的色阶值与所属区域的目标值之间的差异相关。因此,对于点(m, n),我们提出如下的隶属度定义函数:

[mu_X(x_{mn}) = left{egin{matrix} frac{1}{1+frac{|x_{mn} - mu_0|}{C} } & x_{mn} leq t frac{1}{1+frac{|x_{mn} - mu_1|}{C} } & x_{mn} > t end{matrix} ight. quadquad (1.4) ]

其中C是一个常数,该常数使得(0.5 leq mu_X(x_{mn}) leq 1)。因此,对于一个给定的阈值t,图像中任何一个像素要么属于背景,要么属于前景,因此,每个像素的隶属度不应小于0.5。C值在实际的编程中,可以用图像的最大灰度值减去最小灰度值来表达,即 (C=g_{max}-g_{min});

模糊度的度量及取阈值的规则

模糊度表示了一个模糊集的模糊程度,有好几种度量方式,本文使用了香农熵函数来度量模糊度。基于香农熵函数,一个模糊集A的熵定义为:

[S(A) = frac{1}{nln(2)} sum_{i}S(mu_A(x_i)) quad i = 1,2...n quadquad (1.5) ]

其中, 香农公式为:

[S(mu_A(x_i)) = -mu_A(x_i) lnmu_A(x_i) - [1 - mu_A(x_i)] ln [1 - mu_A(x_i)] quadquad (1.6) ]

拓展到二维,图像X的熵可以表示为:

[E(X) = frac{1}{MNln(2)}sum_{m}sum_{n}S(mu_x(X_{mn})) quad m = 1,2...M-1;n = 1,2...N-1 quadquad (1.7) ]

因为灰度图像至多只有L个色阶,因此使用直方图式(7)可进一步写成:

[E(X) = frac{1}{MNln(2)}sum_{g}S(mu_x(g)) quad g = 1,2...L-1 quadquad (1.8) ]

E(X)具有以下属性:
(1). 0≤E(X)≤1 ;
(2). 如果(mu_x(X_{mn}) = 0)或者(mu_x(X_{mn}) = 1)时,E(X)具有最小值0,在本文中(mu_x(X_{mn}))只可能为1,此时分类具有最好的明确性。
(3). 当(mu_x(X_{mn}) = 0.5),E(X)获得最大值1,此时的分类具有最大的不明确性。
那么对于图像X,我们确定最好的阈值t的原则就是:对于所有的可能的阈值t,取香农熵值最小时的那个t为最终的分割阈值。

对比其他二值分割

原图像
技术图片

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?OSTU ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 本文方法

技术图片技术图片

模糊集聚类图像分割

模糊聚类理论

聚类,就是将一组给定的未知类标号的样本分成内在的多个类别,使得同一类中的样本具有较高的相似度,而不同的类中样本差别大。 1973年,J.C. Bezdek提出了里程碑式的模糊C均值聚类算法(FCM)[2],通过引入样本到聚类中心的隶属度,使准则函数不仅可微,且软化了模式的归属。在众多模糊聚类算法中,FCM算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。

FCM算法原理

根据聚类的数目C和和一组包含N个数据的L维向量(X_k), 用FCM算法输出元素的隶属度(mu{ij}), 它表示数据&X_j&属于第 i 类的概率,通过求下面式子的目标函数的最小值得到,通常取m=2。

[J(U, V) = sum_{i = 1}^{C}sum_{j = 1}^{N} U_{ij}^m d^2(X_k, V_j) quadquad (2.1) ]

式(2.1)的约束条件为:

[sum_{i=1}^{C} U_{ij} = 1 0 < sum_{j=1}^{N} U_{ij} < n ]

(2.1)式的约束条件下,可以求得目标函数取最小值时相应的隶属度矩阵和聚类中心。通常,该最小值用极小值代替,因此分别对各变量求偏导,并令偏导数为0,联立并解出更新后的模糊隶属度和聚类中心,如下公式(2.2)(2.3)。

[U_{ij} = frac{1}{sum_{k = 1}^{C}[d^2(X_j, V_i) / d^2(X_j, V_k)]^{frac{2}{m-1}}} quadquad (2.2) V_i = frac{sum_{j=1}^{N} X_j mu_{ij}^m }{sum_{j=1}^{N} mu_{ij}^m} quadquad (2.3) ]

FCM算法的步骤

  1. 设置目标函数的精度e,模糊指数m(m通常取2)和算法最大迭代次数;
  2. 初始化隶属度矩阵或聚类中心;
  3. 由式(2.2)(2.3)更新模糊划分矩阵和聚类中心;
  4. 若目标函数则迭代结束;否则,跳转执行第三步;
  5. 根据所得到的隶属度矩阵,取样本隶属度最大值所对应类作为样本聚类的结果,聚类结束。
    技术图片

对比其他聚类方法

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?KMeans ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 本文方法
技术图片技术图片

人脸美颜

【这个插入一个整个的流程图】

实验结果

参考文献

[1]. Image thresholding by minimizing the measure of fuzziness
[2]. J.C. Bezdek, L.O. Hall, L.P. Clark, Review of MRsegmentation technique in pattern recognition[J], Medical Physics 10 (20) (1993) 33–48.

以上是关于基于模糊集图像分割的人脸美颜的主要内容,如果未能解决你的问题,请参考以下文章

基于模糊聚类的图像分割

图像分割基于模糊聚类算法FCM实现图像分割matlab源码

图像分割基于FCM和改进的模糊聚类FCM实现脑部CT图像分割matlab源码

基于边缘像素图的图像分割

图像分割基于局部空间信息模糊聚类FLICM算法图像分割matlab源码

基于人脸识别和图像分割技术制作证件照