11.分类与监督学习,朴素贝叶斯分类算法

Posted fzwboke

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了11.分类与监督学习,朴素贝叶斯分类算法相关的知识,希望对你有一定的参考价值。

1.理解分类与监督学习、聚类与无监督学习。

 

简述分类与聚类的联系与区别。

 

简述什么是监督学习与无监督学习。

 

 

 

2.朴素贝叶斯分类算法 实例

 

利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。

 

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

 

目标分类变量疾病:

 

–心梗

 

–不稳定性心绞痛

 

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

 

最可能是哪个疾病?

 

上传手工演算过程。

 

 

性别

年龄

KILLP

饮酒

吸烟

住院天数

疾病

1

>80

1

7-14

心梗

2

70-80

2

<7

心梗

3

70-81

1

<7

不稳定性心绞痛

4

<70

1

>14

心梗

5

70-80

2

7-14

心梗

6

>80

2

7-14

心梗

7

70-80

1

7-14

心梗

8

70-80

2

7-14

心梗

9

70-80

1

<7

心梗

10

<70

1

7-14

心梗

11

>80

3

<7

心梗

12

70-80

1

7-14

心梗

13

>80

3

7-14

不稳定性心绞痛

14

70-80

3

>14

不稳定性心绞痛

15

<70

3

<7

心梗

16

70-80

1

>14

心梗

17

<70

1

7-14

心梗

18

70-80

1

>14

心梗

19

70-80

2

7-14

心梗

20

<70

3

<7

不稳定性心绞痛

 

 

 

3.使用朴素贝叶斯模型对iris数据集进行花分类。

 

尝试使用3种不同类型的朴素贝叶斯:

 

  • 高斯分布型
  • 多项式型
  • 伯努利型

 

并使用sklearn.model_selection.cross_val_score(),对各模型进行交叉验证。

 

以上是关于11.分类与监督学习,朴素贝叶斯分类算法的主要内容,如果未能解决你的问题,请参考以下文章

11.分类与监督学习,朴素贝叶斯分类算法

11.分类与监督学习,朴素贝叶斯分类算法

11.分类与监督学习,朴素贝叶斯分类算法

11.分类与监督学习,朴素贝叶斯分类算法

11.分类与监督学习,朴素贝叶斯分类算法

11.分类与监督学习,朴素贝叶斯分类算法