机器学习模型之感知机

Posted stephen-goodboy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习模型之感知机相关的知识,希望对你有一定的参考价值。

1、感知机模型

感知机是一个线性分类器,感知机的公式是

[ f(x) = sign(wx+b) ]

其中

[ operatorname{sign}(x)=left{egin{array}{ll} +1, & x geqslant 0 -1, & x<0 end{array} ight. ]

感知机说得是我们有一系列的点x = (x1,x2,x3...xn)和相应的参数w = (w1,w2,w3....wn),我们将x和w向量进行乘积操作,最终会得到一个数字,如果这个数字大于等于0,那么我们将其归为+1类别,否则,归为-1类别。

关于(wx+b)可以理解为一个超平面,展开就是(w_{1} x_{1} + w_{2}x_{2} +w_{3}x_{3} + ...... +b),当(wx+b = 0)时,其表示的就是一个超平面,在二维空间如下图所示

技术图片
当我们输入一个序列,如果$wx+b>0$那么其也就显示在直线的上方,若$wx+b<0$那就是在直线的下方,若$wx+b=0$则刚好是在直线上。我们发现,对于$wx+b=0$来说,当成倍的扩大w和b,这个直线是没有任何变化的,对于分类结果也不会有任何变化,该分成正类还是正类,该分成负类还是负类。

2、感知机策略

那么我们如何学习感知机的参数w呢?我们的策略就是构建损失函数,那么如何构建损失函数呢?我们想到的一种方法是误分类点的个数作为损失函数,但是这种方法的结果对w和b不可导,那么,我们就想出了另外一种策略,对于误分类的数据,其有一个性质

[ -y_{i} (wx_{i} + b) > 0 ]

(y_{i} = +1,wx_{i} + b = -1)时,(-y_{i} (wx_{i} + b) > 0),当(y_{i} = -1,wx_{i} + b = +1)时,(-y_{i} (wx_{i} + b) > 0),那对于分类正确的点怎么办呢?很简单,我们就不管他就行,或者他们的损失就是0,我们加上0就可以了。所以我们的损失函数就是所有误分类点的集合,如下面公式所示

技术图片

3、感知机算法

那我们如何来求解w和b呢,常用的策略就是对相应的参数进行求导,利用梯度下降法更新参数,求导结果为

技术图片
参数更新为
技术图片

以上是关于机器学习模型之感知机的主要内容,如果未能解决你的问题,请参考以下文章

机器学习入门之感知机

机器学习入门之感知机

机器学习基石感知机模型+PLA

机器学习神经元模型以及感知机

机器学习-感知机

今日机器学习概念:感知机模型