FFT与游戏开发

Posted hamwj1991

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FFT与游戏开发相关的知识,希望对你有一定的参考价值。

FFT与游戏开发(六)

先上成果,简单的漫反射光照,不过已经可以体现出法线了。
技术图片

法线

有了高度场,还需要法线信息,法线可以通过对高度场求梯度得到,这里默认z轴朝上。

  1. 高度场(Height)

    [P(x,y,t) = (x,y,H(x,y,t)) ]

  2. 副切线(BiTangent)

    [egin{aligned} B(x,y,t) &= left( frac{partial x}{partial x}, frac{partial y}{partial x}, frac{partial H(x,y,t)}{partial x} ight) &= left( 1, 0, frac{partial H(x,y,t)}{partial x} ight) end{aligned} ]

  3. 切线(Tangent)

    [egin{aligned} T(x,y,t) &= left( frac{partial x}{partial y}, frac{partial y}{partial y}, frac{partial H(x,y,t)}{partial y} ight) &= left( 0, 1, frac{partial H(x,y,t)}{partial y} ight) end{aligned} ]

  4. 法线(Normal)

    [egin{aligned} N(x,y,t) &= B(x,y,t) imes T(x,y,t) &= left( -frac{partial H(x,y,t)}{partial x}, -frac{partial H(x,y,t)}{partial y}, 1 ight) end{aligned} ]

高度场的全微分(梯度)

[egin{aligned} abla h(overrightarrow x, t) &= left(frac{partial h}{partial x}, frac{partial h}{partial y} ight) &= abla sum_{overrightarrow k} ilde h (overrightarrow k, t) e^{j overrightarrow k cdot overrightarrow x} &= sum_{overrightarrow k} ilde h (overrightarrow k, t) abla e^{j overrightarrow k cdot overrightarrow x} &= sum_{overrightarrow k} ilde h (overrightarrow k, t) abla e^{j(k_x x + k_z z)} &= sum_{overrightarrow k} ilde h (overrightarrow k, t) left( e^{j(k_x x + k_z z) }jk_x, e^{j(k_x x + k_z z) }jk_z ight) &= sum_{overrightarrow k} ilde h (overrightarrow k, t) j overrightarrow k e^{j overrightarrow k cdot overrightarrow x} end{aligned} ]

由此可以套用之前计算高度场的那套iFFT,只不过$$ ilde h $$变成了$$ ilde h j overrightarrow k $$

以上是关于FFT与游戏开发的主要内容,如果未能解决你的问题,请参考以下文章

我不太了解 FFT 和采样率

游戏开发是啥?

链·游戏——中国区块链技术与游戏开发者大会日程正式公布!

游戏开发专业介绍?

游戏开发都会学啥?

pygame游戏开发|中国计算机设计大赛游戏开发与设计之冰雪英雄会(附源码)