PAT 1004 Counting Leaves (30分)

Posted codervivi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT 1004 Counting Leaves (30分)相关的知识,希望对你有一定的参考价值。

题目

A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N<100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format: ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID‘s of its children. For the sake of simplicity, let us fix the root ID to be 01.

The input ends with N being 0. That case must NOT be processed.

Output Specification:
For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

Sample Input:
2 1
01 1 02
Sample Output:
0 1

题目大意

翻译过来就是,有一棵树,给出了节点数N(根节点编号为01),非叶子节点M,给出了每个非叶子节点的孩子个数 K,每个孩子的编号

输出 每一层有几个叶子节点

思路分析

  • 不用构建树的结构体,首先我们不用区分孩子的顺序,知道它有几个孩子,编号是几就可以了;其次,每个非叶子节点所拥有的孩子数目是不一样的,也无法构建结构体。
  • 所以,我们用一个vector数组,每个vector保存一个非叶子节点的所有孩子编号。
  • 判断是否是叶子节点很简单,只需要判断它对应的vector的size是否为0就可以。
  • 由于我们不能直接确定树的结构,而最后输出每一层的非叶子节点个数,所以需要一个变量maxLevel保存这个数有多高,也就是最深一层是哪一层。
  • 然后我们要求得每一层的叶子节点有几个,所以还得用一个数组保存每一层的叶子节点数。
  • 接下来,从根节点开始,进行递归就好了
	// 根节点编号是1,层级是0 
	helper(1, 0);
	// index 节点编号; level 节点在哪一层
	void helper(int index, int level) {
		// 他没有孩子,它是叶子节点,
		if (nodes[index].size() == 0) {
			// 他所在这一层叶子节点数+1 
			levelLeaves[level]++;
			// 更新 这棵树的最深的有效层
			maxLevel = max(maxLevel, level);
			return;
		}
		// 他的所有孩子都处于他的下一层 
		for (int i = 0; i < nodes[index].size(); ++i) 
			helper(nodes[index][i], level + 1);
	}
} 

完整代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

// 保存每个节点的全部孩子,自己的编号作为下标,值是一个vector 
vector<int> nodes[100];
// 保存每一层有几个叶子节点 
int levelLeaves[100];
// 题目最多有100个节点,保存最深的有效层是哪一层

int maxLevel = -1; 

//
void helper(int index, int level) {
	// 他没有孩子,他所在这一层叶子节点数+1 
	if (nodes[index].size() == 0) {
		levelLeaves[level]++;
		// 更新 最深的有效层
		maxLevel = max(maxLevel, level);
		return;
	}
	// 他的所有孩子都处于他的下一层 
	for (int i = 0; i < nodes[index].size(); ++i) 
		helper(nodes[index][i], level + 1);
} 

int main() {
	
	// n个节点,m个非叶子节点 
	int n, m;
	
	int index, kids, child;
	
	cin >> n >> m;
	
	// 每一行是一个非叶子节点的情况
	// 编号 几个孩子 孩子1编号 孩子2编号 ... 
	for (int i = 0; i < m; ++i) {
		cin >> index >> kids;
		for (int j = 0; j < kids; ++j) {
			cin >> child;
			nodes[index].push_back(child);
		}
	} 
	
	// 根节点编号是1,层级是0 
	helper(1, 0);
	
	// 这样写会导致最终多出来一个空格,不满足输出要求	
//	for (int i = 0; i < maxLevel; ++i)
//		cout << levelLeaves[i] << " ";
	// 输出每一层的叶子节点个数
	cout << levelLeaves[0];
	// maxLevel是最深层 
	for (int i = 1; i <= maxLevel; ++i)
		cout << " " << levelLeaves[i]; 

    return 0;
}

以上是关于PAT 1004 Counting Leaves (30分)的主要内容,如果未能解决你的问题,请参考以下文章

pat 1004 Counting Leaves

PAT 甲级 1004 Counting Leaves

PAT Advanced 1004 Counting Leaves

PAT 1004 Counting Leaves(结构体)

PAT 1004 Counting Leaves (30分)

PAT1004 Counting Leaves (30) 数组链式建树