数值分析实验之非线性方程求根(MATLAB实现)

Posted ynly

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数值分析实验之非线性方程求根(MATLAB实现)相关的知识,希望对你有一定的参考价值。

一、实验目的

  1. 了解一般非线性方程的求根是比较复杂的事情:要讨论(或知道)它有无实根,有多少实根;知道求近似根常用的几种方法,每种方法的特点是什么。

  2. 用通过二分法(区间半分法)、不动点(也Picard)迭代法及Newton迭代(切线)法求其它非线性方程的根,并尽可能估计误差。

二、实验原理

     技术图片

 

 三、实验程序

     技术图片

 

 四、实验内容

   1. 用二分法求方程x3-3x-1=0在的所有根.要求每个根的误差小于0.001.

   提示与要求: (1) 利用精度找到迭代次数;

           (2) 由f(x)=3(x2-1)可取隔根区间[-2,-1].[-1,1].[1,2]);

           (3) 用程序求各隔根区间内的根.

 2. 用不动点迭代求: (1)x3+2x2+10x-20=0的所有根.

           或: (2)9x2-sinx-1=0在[0,1]上的一个根.

 3. 用Newton迭代法求解下列之一,准确到10-5:

   (1) x3-x-1=0的所有根;

   (2) ex+2-x+2cosx-6=0位于[0,2]上的根.

 

 五、实验程序

    • 二分法:

文件代码:
function y = f(x)
y=x^3-3*x-1;
end

程序代码:
function Bipart(a0,b0,tol)
%a0为左区间,b0为右区间,tol为区间误差限
a=a0;b=b0;
m=ceil(log((b-a)/tol)/log(2));
for k=1:m
    p=(a+b)/2;
    if f(p)*f(b)<0
        a=p;
    else
        b=p;
    end
end
disp([‘经过二分法求得的跟为:x=‘,num2str((a+b)/2,‘%.6f‘)])
disp([‘共经过‘,num2str(k),‘次计算‘])

命令窗口:
Bipart(-2,-1, 0.001)
Bipart(-1, 1, 0.001)
Bipart (1,2, 0.001)

 运行结果:

      技术图片

 

    • 不动点法:

文件代为:
function y = f(x)
y=9*x^2-sin(x)-1;
end

程序代码:
function Budongdian(x0,tol,m)
%x0为初始值,tol为误差容限,m为最大迭代次数
syms x
F(x)=sqrt(sin(x)+1)/3;
m=m;
text=‘‘;
x=[];
x(1)=x0;
for k=1:m
   x(k+1)=F(x(k));
   if (abs(x(k+1)-x(k))<=tol)==1
       text=‘迭代成功‘;
       disp(text);
       disp([‘经过不动点迭代法求得的跟为:x=‘,num2str(x(k+1),‘%.7f‘)]);
       disp([‘共经过‘,num2str(k),‘次计算‘])
       break
   end
end
if isempty(text)==1
    disp(‘Method failed‘)
end

命令窗口:
Budongdian(1, 0.00001, 100)

   运行结果:

   技术图片

 

    • 牛顿迭代法:

文件代码:
function y = f(x)
y=exp(x)+2^(-x)+2*cos(x)-6;
end

程序代码:
function Newton_gen(x0,tol,m)
%x0为初始值,tol为误差容限,m为最大迭代次数
syms x
F(x)=x-f(x)/diff(f(x));
m=m;
text=‘‘;
x=[];
x(1)=x0;
for k=1:m
   x(k+1)=F(x(k));
   if (abs(x(k+1)-x(k))<=tol)==1
       text=‘迭代成功‘;
       disp(text);
       disp([‘经过Newton迭代法求得的跟为:x=‘,num2str(x(k+1),‘%.7f‘)]);
       disp([‘共经过‘,num2str(k),‘次计算‘])
       break
   end
end
if isempty(text)==1
    disp(‘Method failed‘)
end

命令窗口:
Newton_ .gen(2, 0.00001, 100)

  运行结果:

    技术图片

另解:

 • 二分法:

定义函数:
function Bipart_2(a0,b0,tol,Tol)
%a0为左区间,b0为右区间,tol为区间误差限,Tol为f误差限
a=a0;b=b0;
m=ceil(log((b-a)/tol)/log(2));
for k=1:m
    p=(a+b)/2;
    if f(p)*f(b)<0
        a=p;
    else
        b=p;
    end
    if abs(f((a+b)/2))<Tol
        break;
    end
end
disp([‘经过二分法求得的跟为:x=‘,num2str((a+b)/2,‘%.6f‘)])
disp([‘共经过‘,num2str(k),‘次计算‘])
    
命令窗口:
Bipart. .2(-1, 1,0.001,0.1)
Bipart_ .2(-1, 1, 0.001, 0.000001)

  运行结果:

    技术图片

 

• 不动点法:

定义函数:
function [x,k]=budong(fun,x0,tol,m)
for k=1:m
    x=fun(x0);
    if abs(x-x0)<tol
 break;
end
x0=x;
end
x=vpa(x,8);

function t=fun(x1)
syms x;
f=9*x.*x-sin(x)-1;
s=subs(diff(f,x),x,x1);
x=x1;
f=9*x.*x-sin(x)-1;
t=x-f/s;

命令行窗口输入:
[x,k]=budong(@fun,0.5,1e-5,100)

 运行结果:

      技术图片

以上是关于数值分析实验之非线性方程求根(MATLAB实现)的主要内容,如果未能解决你的问题,请参考以下文章

数值分析实验之线性方程组的迭代求解(MATLAB实现)

数值分析实验之矩阵的LU分解及在解线性方程组中的应用(MATLAB 代码)

数值分析实验之线性方程组的迭代求解(Python实现)

《数值分析》-- 非线性方程的数值解法

《数值分析》-- 非线性方程的数值解法

《数值分析》-- 非线性方程的数值解法