Markdown 数学公式输入
Posted kingbook
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Markdown 数学公式输入相关的知识,希望对你有一定的参考价值。
(a+b)
$a+b$ //左边显示
$$a+b$$ //居中显示
(vec A)
$vec A$
(x^{y^z} = (1+e^x)^{-2xy^w})
$x^{y^z} = (1+e^x)^{-2xy^w}$
(f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5})
$f(x, y) = x^2 + y^2, x epsilon [0, 100], y epsilon {3, 4, 5}$
((frac {x} {y})^2 , left(frac {x} {y} ight)^2)
$(frac {x} {y})^2 , left(frac {x} {y}
ight)^2$
(left. frac{du}{dx} ight| _{x=0})
$left. frac{du}{dx}
ight| _{x=0}$
(frac{1}{2x+1} , {{1} over {2x+1}})
$frac{1}{2x+1} , {{1} over {2x+1}}$
(sqrt[3]{9}, sqrt{16})
$sqrt[3]{9}, sqrt{16}$
(f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2)
$f(x_1,x_2,ldots,x_n) = x_1^2+x_2^2+cdots+x_n^2$
(vec a cdot vec b = 0)
$vec a cdot vec b = 0$
(int_0^1x^2dx)
$int_0^1x^2dx$
(lim_{n ightarrow+infty}frac{1}{n(n+1)})
$lim_{n
ightarrow+infty}frac{1}{n(n+1)}$
(sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}})
$sum_1^nfrac{1}{x^2}, prod_{i=0}^n{1 over {x^2}}$
(alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta heta Theta vartheta iota kappa lambda Lambda mu u xi Xi pi Pi varpi ho varrho sigma Sigma varsigma au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega)
$alpha eta gamma Gamma delta Delta epsilon varepsilon zeta eta heta Theta vartheta iota kappa lambda Lambda mu
u xi Xi pi Pi varpi
ho varrho sigma Sigma varsigma au upsilon Upsilon phi Phi varphi chi psi Psi Omega omega$
显示 | 命令 | 显示 | 命令 |
---|---|---|---|
(alpha) | alpha | (eta) | eta |
(gamma) | gamma | (delta) | delta |
(epsilon) | epsilon | (zeta) | zeta |
(eta) | eta | ( heta) | heta |
(iota) | iota | (kappa) | kappa |
(lambda) | lambda | (mu) | mu |
( u) | u | (xi) | xi |
(pi) | pi | ( ho) | ho |
(sigma) | sigma | ( au) | au |
(upsilon) | upsilon | (phi) | phi |
(chi) | chi | (psi) | psi |
(omega) | omega |
(# $ \\%&\\_{})
$# $ \\%&\\_{}$
(pm imes div mid)
$pm imes div mid$
(cdot circ ast igodot igotimes leq geq eq approx equiv sum prod coprod)
$cdot circ ast igodot igotimes leq geq
eq approx equiv sum prod coprod$
(emptyset in otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup)
$emptyset in
otin subset supset subseteq supseteq igcap igcup igvee igwedge iguplus igsqcup$
(log lg ln)
$log lg ln$
(ot angle 30^circ sin cos an cot sec csc)
$ot angle 30^circ sin cos an cot sec csc$
(y{prime}x int iint iiint oint lim infty abla)
$y{prime}x int iint iiint oint lim infty
abla$
(ecause herefore forall exists)
$ecause herefore forall exists$
(uparrow downarrow leftarrow ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow)
$uparrow downarrow leftarrow
ightarrow Uparrow Downarrow Leftarrow Rightarrow longleftarrow longrightarrow Longleftarrow Longrightarrow$
(overline{a+b+c+d} underline{a+b+c+d} overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0} hat{y} check{y} reve{y})
$overline{a+b+c+d}
underline{a+b+c+d}
overbrace{a+underbrace{b+c}_{1.0}+d}^{2.0}
hat{y} check{y} reve{y}$
( egin{matrix} 1&0&0 &1&0 &0&1end{matrix} )
$
egin{matrix}
1&0&0 &1&0 &0&1end{matrix}
$
在起始、结束标记处用下列词替换 matrix
pmatrix :小括号边框
bmatrix :中括号边框
Bmatrix :大括号边框
vmatrix :单竖线边框
Vmatrix :双竖线边框
$$
egin{bmatrix}
{a_{11}}&{a_{12}}&{cdots}&{a_{1n}}{a_{21}}&{a_{22}}&{cdots}&{a_{2n}}{vdots}&{vdots}&{ddots}&{vdots}{a_{m1}}&{a_{m2}}&{cdots}&{a_{mn}}end{bmatrix}
$$
$$
egin{array}{c|lll}
{↓}&{a}&{b}&{c}hline
{R_1}&{c}&{b}&{a}{R_2}&{b}&{c}&{c}end{array}
$$
$$
egin{cases}
a_1x+b_1y+c_1z=d_1a_2x+b_2y+c_2z=d_2a_3x+b_3y+c_3z=d_3end{cases}
$$
https://www.jianshu.com/p/a0aa94ef8ab2
https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
https://blog.csdn.net/xingxinmanong/article/details/78528791
以上是关于Markdown 数学公式输入的主要内容,如果未能解决你的问题,请参考以下文章