月球美容计划之图的储存结构汇总
Posted mqxnongmin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了月球美容计划之图的储存结构汇总相关的知识,希望对你有一定的参考价值。
SJ图论非常流弊,为了省赛队里知识尽量广,我就直接把图continue,如今回想起来丫的全忘了,从头開始吧。
先写写图的存储,再写写最小生成树和最短路的几个经典算法。月球美容计划就能够结束了。0 0。拖了好久,还有非常多内容要写。- -
这次总结了邻接矩阵,邻接表。十字链表,邻接多重表,边集数组,这5种经常使用的图的储存结构,或许能当模板用吧。
?
?
邻接矩阵
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//邻接矩阵
int G[100][100];
int add1 (int i,int j,int w)
{
G[i][j] = w;
return 0;
}
int main()
{
int i,n;
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
add1 (a,b,w);
//无向图加上
add1 (b,a,w);
}
return 0;
}
邻接表
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//邻接表
struct dot
{
int d;
int w;
struct dot *next;
};
struct hed
{
int v;
struct dot *next;
}head[100];
int add2(int i,int j,int w)
{
struct dot * p;
struct dot * t = new dot;
t->d = j;
t->w = w;
t->next = NULL;
if (head[i].next == NULL)
{
head[i].next = t;
return 0;
}
p = head[i].next;
while (p->next != NULL)
p = p->next;
p->next = t;
return 0;
}
int main()
{
int i,n;
memset (head,0,sizeof (head));
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
add2 (a,b,w);
//无向图加上
add2 (b,a,w);
}
return 0;
}
十字链表(有向图好用)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//十字链表
struct dot
{
int d;
int w;
struct dot *next;
};
struct hed
{
int v;
struct dot *to;
struct dot *next;
}head[100];
int add3(int i,int j,int w)
{
struct dot * p;
struct dot * t = new dot;
t->d = j;
t->w = w;
t->next = NULL;
//正邻接表构建
if (head[i].next == NULL)
{
head[i].next = t;
}else
{
p = head[i].next;
while (p->next != NULL)
p = p->next;
p->next = t;
}
//逆邻接表打十字
if (head[i].to == NULL)
{
head[i].to = t;
return 0;
}else
{
p = head[i].to;
while (p->next != NULL)
p = p->next;
p->next = t;
}
return 0;
}
int main()
{
int i,n;
memset (head,0,sizeof (head));
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
add3 (a,b,w);
}
return 0;
}
邻接多重表(无向图)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//邻接多重表(无向图)
struct dot
{
int i,j;
int w;
struct dot *inext;
struct dot *jnext;
};
struct hed
{
int v;
struct dot *next;
}head[100];
int add4(int i,int j,int w)
{
struct dot *t = new dot;
struct dot *p = NULL,*tp = NULL;
t->i = i;
t->j = j;
t->w = w;
t->inext = NULL;
t->jnext = NULL;
if (head[i].next == NULL)
{
head[i].next = t;
}else
{
p = head[i].next;
while (p != NULL)
{
tp = p;
if (p->i == i)
p = p->inext;
else
p = p->jnext;
}
if (tp->i == i)
tp->inext = t;
else
tp->jnext = t;
}
if (head[j].next == NULL)
{
head[j].next = t;
}else
{
p = head[j].next;
while (p != NULL)
{
tp = p;
if (p->i == j)
p = p->inext;
else
p = p->jnext;
}
if (tp->i == j)
tp->inext = t;
else
tp->jnext = t;
}
return 0;
}
int main()
{
int i,n;
memset (head,0,sizeof (head));
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
add4 (a,b,w);
}
return 0;
}
?
边集数组
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//边集数组
struct e
{
int i,j;
int w;
}eg[100];
int cont;
int add5(int i,int j,int w)
{
eg[cont].i = i;
eg[cont].j = j;
eg[cont].w = w;
return 0;
}
int main()
{
int i,n;
memset (eg,0,sizeof (eg));
cont = 0;
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
//有向图无向图皆可
add5 (a,b,w);
}
return 0;
}
边集数组之前向星
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//前向星
int head[100];
struct e
{
int to;
int fro;
int w;
}eg[100];
int cont;
int add6 (int i,int j,int w)
{
eg[cont].to = j;
eg[cont].fro = head[i];
eg[cont].w = w;
head[i] = cont++;
return 0;
}
int main()
{
int i,n;
memset (head,-1,sizeof (head));
cont = 0;
//建图
scanf ("%d",&n);
for (i = 0;i < n;i++)
{
int a,b,w;
//输入起点、终点、权重
scanf ("%d%d%d",&a,&b,&w);
add6 (a,b,w);
//无向图加上
add6 (b,a,w);
}
return 0;
}
以上是关于月球美容计划之图的储存结构汇总的主要内容,如果未能解决你的问题,请参考以下文章