淘宝数据魔方技术架构解析

Posted z12568

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了淘宝数据魔方技术架构解析相关的知识,希望对你有一定的参考价值。

淘宝网拥有国内最具商业价值的海量数据,而帮助消费者进行理性的购物决策,是淘宝数据平台与产品部的使命。为此,我们进行了一系列数据产品的研发,比如为大家所熟知的量子统计、数据魔方和淘宝指数等。本文将以数据魔方为例,向大家介绍淘宝在海量数据产品技术架构方面的探索。

按照数据的流向来划分,我们把淘宝数据产品的技术架构分为五层,分别是数据源、计算层、存储层、查询层和产品层。位于架构顶端的是我们的数据来源层,这里有淘宝主站的用户、店铺、商品和交易等数据库,还有用户的浏览、搜索等行为日志等。这一系列的数据是数据产品最原始的生命力所在。

接下来将重点从四个方面阐述数据魔方设计上的特点

关系型数据库(RDBMS)自20世纪70年代提出以来,在工业生产中得到了广泛的使用。经过三十多年的长足发展,诞生了一批优秀的数据库软件,例如Oracle、MySQL、DB2、Sybase和SQL Server等。

尽管相对于非关系型数据库而言,关系型数据库在分区容忍性(Tolerance to Network Partitions)方面存在劣势,但由于它强大的语义表达能力以及数据之间的关系表达能力,在数据产品中仍然占据着不可替代的作用。

淘宝数据产品选择mysql的MyISAM引擎作为底层的数据存储引擎。在此基础上,为了应对海量数据,我们设计了分布式MySQL集群的查询代理层——MyFOX,使得分区对前端应用透明。

在MyFOX出现之后,一切都看起来那么完美,开发人员甚至不会意识到MyFOX的存在,一条不用任何特殊修饰的SQL语句就可以满足需求。这个状态持续了很长一段时间,直到有一天,我们碰到了传统的关系型数据库无法解决的问题——全属性选择器

MyFOX和Prom为数据产品的不同需求提供了数据存储和底层查询的解决方案,但随之而来的问题是,各种异构的存储模块给前端产品的使用带来了很大的挑战。并且,前端产品的一个请求所需要的数据往往不可能只从一个模块获取

除了起到隔离前后端以及异构“表”之间的数据整合的作用之外,glider的另外一个不容忽视的作用便是缓存管理。上文提到过,在特定的时间段内,我们认为数据产品中的数据是只读的,这是利用缓存来提高性能的理论基础

正是基于本文所描述的架构特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,数据中间层glider支持每天4000万的查询请求,平均响应时间在28毫秒(6月1日数据),足以满足未来一段时间内的业务增长需求。

尽管如此,整个系统中仍然存在很多不完善的地方。一个典型的例子莫过于各个分层之间使用短连接模式的HTTP协议进行通信。这样的策略直接导致在流量高峰期单机的TCP连接数非常高。所以说,一个良好的架构固然能够在很大程度上降低开发和维护的成本,但它自身一定是随着数据量和流量的变化而不断变化的。我相信,过不了几年,淘宝数据产品的技术架构一定会是另外的样子。

 

以上是关于淘宝数据魔方技术架构解析的主要内容,如果未能解决你的问题,请参考以下文章

淘宝数据魔方技术架构解析(转)

《淘宝数据魔方技术架构解析》阅读心得

各大互联网公司架构演进之路汇总

淘宝十年资深架构师吐血总结淘宝的数据库架构设计和采用的技术手段。

企业大数据平台下数仓建设思路

万字干货 | 荔枝魔方基于云原生的架构设计与实践