async 函数
Posted miaosj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了async 函数相关的知识,希望对你有一定的参考价值。
含义
ES2017 标准引入了 async 函数,使得异步操作变得更加方便。
async 函数是什么?一句话,它就是 Generator 函数的语法糖。
前文有一个 Generator 函数,依次读取两个文件。
const fs = require(‘fs‘);
const readFile = function (fileName) {
return new Promise(function (resolve, reject) {
fs.readFile(fileName, function(error, data) {
if (error) return reject(error);
resolve(data);
});
});
};
const gen = function* () {
const f1 = yield readFile(‘/etc/fstab‘);
const f2 = yield readFile(‘/etc/shells‘);
console.log(f1.toString());
console.log(f2.toString());
};
上面代码的函数gen
可以写成async
函数,就是下面这样。
const asyncReadFile = async function () {
const f1 = await readFile(‘/etc/fstab‘);
const f2 = await readFile(‘/etc/shells‘);
console.log(f1.toString());
console.log(f2.toString());
};
一比较就会发现,async
函数就是将 Generator 函数的星号(*
)替换成async
,将yield
替换成await
,仅此而已。
async
函数对 Generator 函数的改进,体现在以下四点。
(1)内置执行器。
Generator 函数的执行必须靠执行器,所以才有了co
模块,而async
函数自带执行器。也就是说,async
函数的执行,与普通函数一模一样,只要一行。
asyncReadFile();
上面的代码调用了asyncReadFile
函数,然后它就会自动执行,输出最后结果。这完全不像 Generator 函数,需要调用next
方法,或者用co
模块,才能真正执行,得到最后结果。
(2)更好的语义。
async
和await
,比起星号和yield
,语义更清楚了。async
表示函数里有异步操作,await
表示紧跟在后面的表达式需要等待结果。
(3)更广的适用性。
co
模块约定,yield
命令后面只能是 Thunk 函数或 Promise 对象,而async
函数的await
命令后面,可以是 Promise 对象和原始类型的值(数值、字符串和布尔值,但这时会自动转成立即 resolved 的 Promise 对象)。
(4)返回值是 Promise。
async
函数的返回值是 Promise 对象,这比 Generator 函数的返回值是 Iterator 对象方便多了。你可以用then
方法指定下一步的操作。
进一步说,async
函数完全可以看作多个异步操作,包装成的一个 Promise 对象,而await
命令就是内部then
命令的语法糖。
基本用法
async
函数返回一个 Promise 对象,可以使用then
方法添加回调函数。当函数执行的时候,一旦遇到await
就会先返回,等到异步操作完成,再接着执行函数体内后面的语句。
下面是一个例子。
async function getStockPriceByName(name) {
const symbol = await getStockSymbol(name);
const stockPrice = await getStockPrice(symbol);
return stockPrice;
}
getStockPriceByName(‘goog‘).then(function (result) {
console.log(result);
});
上面代码是一个获取股票报价的函数,函数前面的async
关键字,表明该函数内部有异步操作。调用该函数时,会立即返回一个Promise
对象。
下面是另一个例子,指定多少毫秒后输出一个值。
function timeout(ms) {
return new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
async function asyncPrint(value, ms) {
await timeout(ms);
console.log(value);
}
asyncPrint(‘hello world‘, 50);
上面代码指定 50 毫秒以后,输出hello world
。
由于async
函数返回的是 Promise 对象,可以作为await
命令的参数。所以,上面的例子也可以写成下面的形式。
async function timeout(ms) {
await new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
async function asyncPrint(value, ms) {
await timeout(ms);
console.log(value);
}
asyncPrint(‘hello world‘, 50);
async 函数有多种使用形式。
// 函数声明
async function foo() {}
// 函数表达式
const foo = async function () {};
// 对象的方法
let obj = { async foo() {} };
obj.foo().then(...)
// Class 的方法
class Storage {
constructor() {
this.cachePromise = caches.open(‘avatars‘);
}
async getAvatar(name) {
const cache = await this.cachePromise;
return cache.match(`/avatars/${name}.jpg`);
}
}
const storage = new Storage();
storage.getAvatar(‘jake‘).then(…);
// 箭头函数
const foo = async () => {};
语法
async
函数的语法规则总体上比较简单,难点是错误处理机制。
返回 Promise 对象
async
函数返回一个 Promise 对象。
async
函数内部return
语句返回的值,会成为then
方法回调函数的参数。
async function f() {
return ‘hello world‘;
}
f().then(v => console.log(v))
// "hello world"
上面代码中,函数f
内部return
命令返回的值,会被then
方法回调函数接收到。
async
函数内部抛出错误,会导致返回的 Promise 对象变为reject
状态。抛出的错误对象会被catch
方法回调函数接收到。
async function f() {
throw new Error(‘出错了‘);
}
f().then(
v => console.log(v),
e => console.log(e)
)
// Error: 出错了
Promise 对象的状态变化
async
函数返回的 Promise 对象,必须等到内部所有await
命令后面的 Promise 对象执行完,才会发生状态改变,除非遇到return
语句或者抛出错误。也就是说,只有async
函数内部的异步操作执行完,才会执行then
方法指定的回调函数。
下面是一个例子。
async function getTitle(url) {
let response = await fetch(url);
let html = await response.text();
return html.match(/<title>([sS]+)</title>/i)[1];
}
getTitle(‘https://tc39.github.io/ecma262/‘).then(console.log)
// "ECMAScript 2017 Language Specification"
上面代码中,函数getTitle
内部有三个操作:抓取网页、取出文本、匹配页面标题。只有这三个操作全部完成,才会执行then
方法里面的console.log
。
await 命令
正常情况下,await
命令后面是一个 Promise 对象,返回该对象的结果。如果不是 Promise 对象,就直接返回对应的值。
async function f() {
// 等同于
// return 123;
return await 123;
}
f().then(v => console.log(v))
// 123
上面代码中,await
命令的参数是数值123
,这时等同于return 123
。
另一种情况是,await
命令后面是一个thenable
对象(即定义then
方法的对象),那么await
会将其等同于 Promise 对象。
class Sleep {
constructor(timeout) {
this.timeout = timeout;
}
then(resolve, reject) {
const startTime = Date.now();
setTimeout(
() => resolve(Date.now() - startTime),
this.timeout
);
}
}
(async () => {
const actualTime = await new Sleep(1000);
console.log(actualTime);
})();
上面代码中,await
命令后面是一个Sleep
对象的实例。这个实例不是 Promise 对象,但是因为定义了then
方法,await
会将其视为Promise
处理。
await
命令后面的 Promise 对象如果变为reject
状态,则reject
的参数会被catch
方法的回调函数接收到。
async function f() {
await Promise.reject(‘出错了‘);
}
f()
.then(v => console.log(v))
.catch(e => console.log(e))
// 出错了
注意,上面代码中,await
语句前面没有return
,但是reject
方法的参数依然传入了catch
方法的回调函数。这里如果在await
前面加上return
,效果是一样的。
任何一个await
语句后面的 Promise 对象变为reject
状态,那么整个async
函数都会中断执行。
async function f() {
await Promise.reject(‘出错了‘);
await Promise.resolve(‘hello world‘); // 不会执行
}
上面代码中,第二个await
语句是不会执行的,因为第一个await
语句状态变成了reject
。
有时,我们希望即使前一个异步操作失败,也不要中断后面的异步操作。这时可以将第一个await
放在try...catch
结构里面,这样不管这个异步操作是否成功,第二个await
都会执行。
async function f() {
try {
await Promise.reject(‘出错了‘);
} catch(e) {
}
return await Promise.resolve(‘hello world‘);
}
f()
.then(v => console.log(v))
// hello world
另一种方法是await
后面的 Promise 对象再跟一个catch
方法,处理前面可能出现的错误。
async function f() {
await Promise.reject(‘出错了‘)
.catch(e => console.log(e));
return await Promise.resolve(‘hello world‘);
}
f()
.then(v => console.log(v))
// 出错了
// hello world
错误处理
如果await
后面的异步操作出错,那么等同于async
函数返回的 Promise 对象被reject
。
async function f() {
await new Promise(function (resolve, reject) {
throw new Error(‘出错了‘);
});
}
f()
.then(v => console.log(v))
.catch(e => console.log(e))
// Error:出错了
上面代码中,async
函数f
执行后,await
后面的 Promise 对象会抛出一个错误对象,导致catch
方法的回调函数被调用,它的参数就是抛出的错误对象。具体的执行机制,可以参考后文的“async 函数的实现原理”。
防止出错的方法,也是将其放在try...catch
代码块之中。
async function f() {
try {
await new Promise(function (resolve, reject) {
throw new Error(‘出错了‘);
});
} catch(e) {
}
return await(‘hello world‘);
}
如果有多个await
命令,可以统一放在try...catch
结构中。
async function main() {
try {
const val1 = await firstStep();
const val2 = await secondStep(val1);
const val3 = await thirdStep(val1, val2);
console.log(‘Final: ‘, val3);
}
catch (err) {
console.error(err);
}
}
下面的例子使用try...catch
结构,实现多次重复尝试。
const superagent = require(‘superagent‘);
const NUM_RETRIES = 3;
async function test() {
let i;
for (i = 0; i < NUM_RETRIES; ++i) {
try {
await superagent.get(‘http://google.com/this-throws-an-error‘);
break;
} catch(err) {}
}
console.log(i); // 3
}
test();
上面代码中,如果await
操作成功,就会使用break
语句退出循环;如果失败,会被catch
语句捕捉,然后进入下一轮循环。
使用注意点
第一点,前面已经说过,await
命令后面的Promise
对象,运行结果可能是rejected
,所以最好把await
命令放在try...catch
代码块中。
async function myFunction() {
try {
await somethingThatReturnsAPromise();
} catch (err) {
console.log(err);
}
}
// 另一种写法
async function myFunction() {
await somethingThatReturnsAPromise()
.catch(function (err) {
console.log(err);
});
}
第二点,多个await
命令后面的异步操作,如果不存在继发关系,最好让它们同时触发。
let foo = await getFoo();
let bar = await getBar();
上面代码中,getFoo
和getBar
是两个独立的异步操作(即互不依赖),被写成继发关系。这样比较耗时,因为只有getFoo
完成以后,才会执行getBar
,完全可以让它们同时触发。
// 写法一
let [foo, bar] = await Promise.all([getFoo(), getBar()]);
// 写法二
let fooPromise = getFoo();
let barPromise = getBar();
let foo = await fooPromise;
let bar = await barPromise;
上面两种写法,getFoo
和getBar
都是同时触发,这样就会缩短程序的执行时间。
第三点,await
命令只能用在async
函数之中,如果用在普通函数,就会报错。
async function dbFuc(db) {
let docs = [{}, {}, {}];
// 报错
docs.forEach(function (doc) {
await db.post(doc);
});
}
上面代码会报错,因为await
用在普通函数之中了。但是,如果将forEach
方法的参数改成async
函数,也有问题。
function dbFuc(db) { //这里不需要 async
let docs = [{}, {}, {}];
// 可能得到错误结果
docs.forEach(async function (doc) {
await db.post(doc);
});
}
上面代码可能不会正常工作,原因是这时三个db.post
操作将是并发执行,也就是同时执行,而不是继发执行。正确的写法是采用for
循环。
async function dbFuc(db) {
let docs = [{}, {}, {}];
for (let doc of docs) {
await db.post(doc);
}
}
如果确实希望多个请求并发执行,可以使用Promise.all
方法。当三个请求都会resolved
时,下面两种写法效果相同。
async function dbFuc(db) {
let docs = [{}, {}, {}];
let promises = docs.map((doc) => db.post(doc));
let results = await Promise.all(promises);
console.log(results);
}
// 或者使用下面的写法
async function dbFuc(db) {
let docs = [{}, {}, {}];
let promises = docs.map((doc) => db.post(doc));
let results = [];
for (let promise of promises) {
results.push(await promise);
}
console.log(results);
}
目前,esm
模块加载器支持顶层await
,即await
命令可以不放在 async 函数里面,直接使用。
// async 函数的写法
const start = async () => {
const res = await fetch(‘google.com‘);
return res.text();
};
start().then(console.log);
// 顶层 await 的写法
const res = await fetch(‘google.com‘);
console.log(await res.text());
上面代码中,第二种写法的脚本必须使用esm
加载器,才会生效。
第四点,async 函数可以保留运行堆栈。
const a = () => {
b().then(() => c());
};
上面代码中,函数a
内部运行了一个异步任务b()
。当b()
运行的时候,函数a()
不会中断,而是继续执行。等到b()
运行结束,可能a()
早就运行结束了,b()
所在的上下文环境已经消失了。如果b()
或c()
报错,错误堆栈将不包括a()
。
现在将这个例子改成async
函数。
const a = async () => {
await b();
c();
};
上面代码中,b()
运行的时候,a()
是暂停执行,上下文环境都保存着。一旦b()
或c()
报错,错误堆栈将包括a()
。
async 函数的实现原理
async 函数的实现原理,就是将 Generator 函数和自动执行器,包装在一个函数里。
async function fn(args) {
// ...
}
// 等同于
function fn(args) {
return spawn(function* () {
// ...
});
}
所有的async
函数都可以写成上面的第二种形式,其中的spawn
函数就是自动执行器。
下面给出spawn
函数的实现,基本就是前文自动执行器的翻版。
function spawn(genF) {
return new Promise(function(resolve, reject) {
const gen = genF();
function step(nextF) {
let next;
try {
next = nextF();
} catch(e) {
return reject(e);
}
if(next.done) {
return resolve(next.value);
}
Promise.resolve(next.value).then(function(v) {
step(function() { return gen.next(v); });
}, function(e) {
step(function() { return gen.throw(e); });
});
}
step(function() { return gen.next(undefined); });
});
}
与其他异步处理方法的比较
我们通过一个例子,来看 async 函数与 Promise、Generator 函数的比较。
假定某个 DOM 元素上面,部署了一系列的动画,前一个动画结束,才能开始后一个。如果当中有一个动画出错,就不再往下执行,返回上一个成功执行的动画的返回值。
首先是 Promise 的写法。
function chainAnimationsPromise(elem, animations) {
// 变量ret用来保存上一个动画的返回值
let ret = null;
// 新建一个空的Promise
let p = Promise.resolve();
// 使用then方法,添加所有动画
for(let anim of animations) {
p = p.then(function(val) {
ret = val;
return anim(elem);
});
}
// 返回一个部署了错误捕捉机制的Promise
return p.catch(function(e) {
/* 忽略错误,继续执行 */
}).then(function() {
return ret;
});
}
虽然 Promise 的写法比回调函数的写法大大改进,但是一眼看上去,代码完全都是 Promise 的 API(then
、catch
等等),操作本身的语义反而不容易看出来。
接着是 Generator 函数的写法。
function chainAnimationsGenerator(elem, animations) {
return spawn(function*() {
let ret = null;
try {
for(let anim of animations) {
ret = yield anim(elem);
}
} catch(e) {
/* 忽略错误,继续执行 */
}
return ret;
});
}
上面代码使用 Generator 函数遍历了每个动画,语义比 Promise 写法更清晰,用户定义的操作全部都出现在spawn
函数的内部。这个写法的问题在于,必须有一个任务运行器,自动执行 Generator 函数,上面代码的spawn
函数就是自动执行器,它返回一个 Promise 对象,而且必须保证yield
语句后面的表达式,必须返回一个 Promise。
最后是 async 函数的写法。
async function chainAnimationsAsync(elem, animations) {
let ret = null;
try {
for(let anim of animations) {
ret = await anim(elem);
}
} catch(e) {
/* 忽略错误,继续执行 */
}
return ret;
}
可以看到 Async 函数的实现最简洁,最符合语义,几乎没有语义不相关的代码。它将 Generator 写法中的自动执行器,改在语言层面提供,不暴露给用户,因此代码量最少。如果使用 Generator 写法,自动执行器需要用户自己提供。
实例:按顺序完成异步操作
实际开发中,经常遇到一组异步操作,需要按照顺序完成。比如,依次远程读取一组 URL,然后按照读取的顺序输出结果。
Promise 的写法如下。
function logInOrder(urls) {
// 远程读取所有URL
const textPromises = urls.map(url => {
return fetch(url).then(response => response.text());
});
// 按次序输出
textPromises.reduce((chain, textPromise) => {
return chain.then(() => textPromise)
.then(text => console.log(text));
}, Promise.resolve());
}
上面代码使用fetch
方法,同时远程读取一组 URL。每个fetch
操作都返回一个 Promise 对象,放入textPromises
数组。然后,reduce
方法依次处理每个 Promise 对象,然后使用then
,将所有 Promise 对象连起来,因此就可以依次输出结果。
这种写法不太直观,可读性比较差。下面是 async 函数实现。
async function logInOrder(urls) {
for (const url of urls) {
const response = await fetch(url);
console.log(await response.text());
}
}
上面代码确实大大简化,问题是所有远程操作都是继发。只有前一个 URL 返回结果,才会去读取下一个 URL,这样做效率很差,非常浪费时间。我们需要的是并发发出远程请求。
async function logInOrder(urls) {
// 并发读取远程URL
const textPromises = urls.map(async url => {
const response = await fetch(url);
return response.text();
});
// 按次序输出
for (const textPromise of textPromises) {
console.log(await textPromise);
}
}
上面代码中,虽然map
方法的参数是async
函数,但它是并发执行的,因为只有async
函数内部是继发执行,外部不受影响。后面的for..of
循环内部使用了await
,因此实现了按顺序输出。
异步遍历器
《遍历器》一章说过,Iterator 接口是一种数据遍历的协议,只要调用遍历器对象的next
方法,就会得到一个对象,表示当前遍历指针所在的那个位置的信息。next
方法返回的对象的结构是{value, done}
,其中value
表示当前的数据的值,done
是一个布尔值,表示遍历是否结束。
这里隐含着一个规定,next
方法必须是同步的,只要调用就必须立刻返回值。也就是说,一旦执行next
方法,就必须同步地得到value
和done
这两个属性。如果遍历指针正好指向同步操作,当然没有问题,但对于异步操作,就不太合适了。目前的解决方法是,Generator 函数里面的异步操作,返回一个 Thunk 函数或者 Promise 对象,即value
属性是一个 Thunk 函数或者 Promise 对象,等待以后返回真正的值,而done
属性则还是同步产生的。
ES2018 引入了“异步遍历器”(Async Iterator),为异步操作提供原生的遍历器接口,即value
和done
这两个属性都是异步产生。
异步遍历的接口
异步遍历器的最大的语法特点,就是调用遍历器的next
方法,返回的是一个 Promise 对象。
asyncIterator
.next()
.then(
({ value, done }) => /* ... */
);
上面代码中,asyncIterator
是一个异步遍历器,调用next
方法以后,返回一个 Promise 对象。因此,可以使用then
方法指定,这个 Promise 对象的状态变为resolve
以后的回调函数。回调函数的参数,则是一个具有value
和done
两个属性的对象,这个跟同步遍历器是一样的。
我们知道,一个对象的同步遍历器的接口,部署在Symbol.iterator
属性上面。同样地,对象的异步遍历器接口,部署在Symbol.asyncIterator
属性上面。不管是什么样的对象,只要它的Symbol.asyncIterator
属性有值,就表示应该对它进行异步遍历。
下面是一个异步遍历器的例子。
const asyncIterable = createAsyncIterable([‘a‘, ‘b‘]);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
asyncIterator
.next()
.then(iterResult1 => {
console.log(iterResult1); // { value: ‘a‘, done: false }
return asyncIterator.next();
})
.then(iterResult2 => {
console.log(iterResult2); // { value: ‘b‘, done: false }
return asyncIterator.next();
})
.then(iterResult3 => {
console.log(iterResult3); // { value: undefined, done: true }
});
上面代码中,异步遍历器其实返回了两次值。第一次调用的时候,返回一个 Promise 对象;等到 Promise 对象resolve
了,再返回一个表示当前数据成员信息的对象。这就是说,异步遍历器与同步遍历器最终行为是一致的,只是会先返回 Promise 对象,作为中介。
由于异步遍历器的next
方法,返回的是一个 Promise 对象。因此,可以把它放在await
命令后面。
async function f() {
const asyncIterable = createAsyncIterable([‘a‘, ‘b‘]);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
console.log(await asyncIterator.next());
// { value: ‘a‘, done: false }
console.log(await asyncIterator.next());
// { value: ‘b‘, done: false }
console.log(await asyncIterator.next());
// { value: undefined, done: true }
}
上面代码中,next
方法用await
处理以后,就不必使用then
方法了。整个流程已经很接近同步处理了。
注意,异步遍历器的next
方法是可以连续调用的,不必等到上一步产生的 Promise 对象resolve
以后再调用。这种情况下,next
方法会累积起来,自动按照每一步的顺序运行下去。下面是一个例子,把所有的next
方法放在Promise.all
方法里面。
const asyncIterable = createAsyncIterable([‘a‘, ‘b‘]);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
const [{value: v1}, {value: v2}] = await Promise.all([
asyncIterator.next(), asyncIterator.next()
]);
console.log(v1, v2); // a b
另一种用法是一次性调用所有的next
方法,然后await
最后一步操作。
async function runner() {
const writer = openFile(‘someFile.txt‘);
writer.next(‘hello‘);
writer.next(‘world‘);
await writer.return();
}
runner();
for await...of
前面介绍过,for...of
循环用于遍历同步的 Iterator 接口。新引入的for await...of
循环,则是用于遍历异步的 Iterator 接口。
async function f() {
for await (const x of createAsyncIterable([‘a‘, ‘b‘])) {
console.log(x);
}
}
// a
// b
上面代码中,createAsyncIterable()
返回一个拥有异步遍历器接口的对象,for...of
循环自动调用这个对象的异步遍历器的next
方法,会得到一个 Promise 对象。await
用来处理这个 Promise 对象,一旦resolve
,就把得到的值(x
)传入for...of
的循环体。
for await...of
循环的一个用途,是部署了 asyncIterable 操作的异步接口,可以直接放入这个循环。
let body = ‘‘;
async function f() {
for await(const data of req) body += data;
const parsed = JSON.parse(body);
console.log(‘got‘, parsed);
}
上面代码中,req
是一个 asyncIterable 对象,用来异步读取数据。可以看到,使用for await...of
循环以后,代码会非常简洁。
如果next
方法返回的 Promise 对象被reject
,for await...of
就会报错,要用try...catch
捕捉。
async function () {
try {
for await (const x of createRejectingIterable()) {
console.log(x);
}
} catch (e) {
console.error(e);
}
}
注意,for await...of
循环也可以用于同步遍历器。
(async function () {
for await (const x of [‘a‘, ‘b‘]) {
console.log(x);
}
})();
// a
// b
Node v10 支持异步遍历器,Stream 就部署了这个接口。下面是读取文件的传统写法与异步遍历器写法的差异。
// 传统写法
function main(inputFilePath) {
const readStream = fs.createReadStream(
inputFilePath,
{ encoding: ‘utf8‘, highWaterMark: 1024 }
);
readStream.on(‘data‘, (chunk) => {
console.log(‘>>> ‘+chunk);
});
readStream.on(‘end‘, () => {
console.log(‘### DONE ###‘);
});
}
// 异步遍历器写法
async function main(inputFilePath) {
const readStream = fs.createReadStream(
inputFilePath,
{ encoding: ‘utf8‘, highWaterMark: 1024 }
);
for await (const chunk of readStream) {
console.log(‘>>> ‘+chunk);
}
console.log(‘### DONE ###‘);
}
异步 Generator 函数
就像 Generator 函数返回一个同步遍历器对象一样,异步 Generator 函数的作用,是返回一个异步遍历器对象。
在语法上,异步 Generator 函数就是async
函数与 Generator 函数的结合。
async function* gen() {
yield ‘hello‘;
}
const genObj = gen();
genObj.next().then(x => console.log(x));
// { value: ‘hello‘, done: false }
上面代码中,gen
是一个异步 Generator 函数,执行后返回一个异步 Iterator 对象。对该对象调用next
方法,返回一个 Promise 对象。
异步遍历器的设计目的之一,就是 Generator 函数处理同步操作和异步操作时,能够使用同一套接口。
// 同步 Generator 函数
function* map(iterable, func) {
const iter = iterable[Symbol.iterator]();
while (true) {
const {value, done} = iter.next();
if (done) break;
yield func(value);
}
}
// 异步 Generator 函数
async function* map(iterable, func) {
const iter = iterable[Symbol.asyncIterator]();
while (true) {
const {value, done} = await iter.next();
if (done) break;
yield func(value);
}
}
上面代码中,map
是一个 Generator 函数,第一个参数是可遍历对象iterable
,第二个参数是一个回调函数func
。map
的作用是将iterable
每一步返回的值,使用func
进行处理。上面有两个版本的map
,前一个处理同步遍历器,后一个处理异步遍历器,可以看到两个版本的写法基本上是一致的。
下面是另一个异步 Generator 函数的例子。
async function* readLines(path) {
let file = await fileOpen(path);
try {
while (!file.EOF) {
yield await file.readLine();
}
} finally {
await file.close();
}
}
上面代码中,异步操作前面使用await
关键字标明,即await
后面的操作,应该返回 Promise 对象。凡是使用yield
关键字的地方,就是next
方法停下来的地方,它后面的表达式的值(即await file.readLine()
的值),会作为next()
返回对象的value
属性,这一点是与同步 Generator 函数一致的。
异步 Generator 函数内部,能够同时使用await
和yield
命令。可以这样理解,await
命令用于将外部操作产生的值输入函数内部,yield
命令用于将函数内部的值输出。
上面代码定义的异步 Generator 函数的用法如下。
(async function () {
for await (const line of readLines(filePath)) {
console.log(line);
}
})()
异步 Generator 函数可以与for await...of
循环结合起来使用。
async function* prefixLines(asyncIterable) {
for await (const line of asyncIterable) {
yield ‘> ‘ + line;
}
}
异步 Generator 函数的返回值是一个异步 Iterator,即每次调用它的next
方法,会返回一个 Promise 对象,也就是说,跟在yield
命令后面的,应该是一个 Promise 对象。如果像上面那个例子那样,yield
命令后面是一个字符串,会被自动包装成一个 Promise 对象。
function fetchRandom() {
const url = ‘https://www.random.org/decimal-fractions/‘
+ ‘?num=1&dec=10&col=1&format=plain&rnd=new‘;
return fetch(url);
}
async function* asyncGenerator() {
console.log(‘Start‘);
const result = await fetchRandom(); // (A)
yield ‘Result: ‘ + await result.text(); // (B)
console.log(‘Done‘);
}
const ag = asyncGenerator();
ag.next().then(({value, done}) => {
console.log(value);
})
上面代码中,ag
是asyncGenerator
函数返回的异步遍历器对象。调用ag.next()
以后,上面代码的执行顺序如下。
ag.next()
立刻返回一个 Promise 对象。asyncGenerator
函数开始执行,打印出Start
。await
命令返回一个 Promise 对象,asyncGenerator
函数停在这里。- A 处变成 fulfilled 状态,产生的值放入
result
变量,asyncGenerator
函数继续往下执行。 - 函数在 B 处的
yield
暂停执行,一旦yield
命令取到值,ag.next()
返回的那个 Promise 对象变成 fulfilled 状态。 ag.next()
后面的then
方法指定的回调函数开始执行。该回调函数的参数是一个对象{value, done}
,其中value
的值是yield
命令后面的那个表达式的值,done
的值是false
。
A 和 B 两行的作用类似于下面的代码。
return new Promise((resolve, reject) => {
fetchRandom()
.then(result => result.text())
.then(result => {
resolve({
value: ‘Result: ‘ + result,
done: false,
});
});
});
如果异步 Generator 函数抛出错误,会导致 Promise 对象的状态变为reject
,然后抛出的错误被catch
方法捕获。
async function* asyncGenerator() {
throw new Error(‘Problem!‘);
}
asyncGenerator()
.next()
.catch(err => console.log(err)); // Error: Problem!
注意,普通的 async 函数返回的是一个 Promise 对象,而异步 Generator 函数返回的是一个异步 Iterator 对象。可以这样理解,async 函数和异步 Generator 函数,是封装异步操作的两种方法,都用来达到同一种目的。区别在于,前者自带执行器,后者通过for await...of
执行,或者自己编写执行器。下面就是一个异步 Generator 函数的执行器。
async function takeAsync(asyncIterable, count = Infinity) {
const result = [];
const iterator = asyncIterable[Symbol.asyncIterator]();
while (result.length < count) {
const {value, done} = await iterator.next();
if (done) break;
result.push(value);
}
return result;
}
上面代码中,异步 Generator 函数产生的异步遍历器,会通过while
循环自动执行,每当await iterator.next()
完成,就会进入下一轮循环。一旦done
属性变为true
,就会跳出循环,异步遍历器执行结束。
下面是这个自动执行器的一个使用实例。
async function f() {
async function* gen() {
yield ‘a‘;
yield ‘b‘;
yield ‘c‘;
}
return await takeAsync(gen());
}
f().then(function (result) {
console.log(result); // [‘a‘, ‘b‘, ‘c‘]
})
异步 Generator 函数出现以后,javascript 就有了四种函数形式:普通函数、async 函数、Generator 函数和异步 Generator 函数。请注意区分每种函数的不同之处。基本上,如果是一系列按照顺序执行的异步操作(比如读取文件,然后写入新内容,再存入硬盘),可以使用 async 函数;如果是一系列产生相同数据结构的异步操作(比如一行一行读取文件),可以使用异步 Generator 函数。
异步 Generator 函数也可以通过next
方法的参数,接收外部传入的数据。
const writer = openFile(‘someFile.txt‘);
writer.next(‘hello‘); // 立即执行
writer.next(‘world‘); // 立即执行
await writer.return(); // 等待写入结束
上面代码中,openFile
是一个异步 Generator 函数。next
方法的参数,向该函数内部的操作传入数据。每次next
方法都是同步执行的,最后的await
命令用于等待整个写入操作结束。
最后,同步的数据结构,也可以使用异步 Generator 函数。
async function* createAsyncIterable(syncIterable) {
for (const elem of syncIterable) {
yield elem;
}
}
上面代码中,由于没有异步操作,所以也就没有使用await
关键字。
yield* 语句
yield*
语句也可以跟一个异步遍历器。
async function* gen1() {
yield ‘a‘;
yield ‘b‘;
return 2;
}
async function* gen2() {
// result 最终会等于 2
const result = yield* gen1();
}
上面代码中,gen2
函数里面的result
变量,最后的值是2
。
与同步 Generator 函数一样,for await...of
循环会展开yield*
。
(async function () {
for await (const x of gen2()) {
console.log(x);
}
})();
// a
// b
以上是关于async 函数的主要内容,如果未能解决你的问题,请参考以下文章
Swift新async/await并发中利用Task防止指定代码片段执行的数据竞争(Data Race)问题