mysql 超大数据/表管理技巧

Posted qfjavabd

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mysql 超大数据/表管理技巧相关的知识,希望对你有一定的参考价值。

技术图片

  如果你对长篇大论没有兴趣,也可以直接看看结果,或许你对结果感兴趣。在实际应用中经过存储、优化可以做到在超过9千万数据中的查询响应速度控制在1到20毫秒。看上去是个不错的成绩,不过优化这条路没有终点,当我们的系统有超过几百人、上千人同时使用时,仍然会显的力不从心。

  目录:

  分区存储

  优化查询

  改进分区

  模糊搜索

  持续改进的方案

  正文:

  分区存储

  对于超大的数据来说,分区存储是一个不错的选择,或者说这是一个必选项。对于本例来说,数据记录来源不同,首先可以根据来源来划分这些数据。但是仅仅这样还不够,因为每个来源的分区的数据都可能超过千万。这对数据的存储和查询还是太大了。mysql5.x以后已经比较好的支持了数据分区以及子分区。因此数据就采用分区+子分区来存储。

  下面是基本的数据结构定义:

  复制代码 代码如下:

  CREATE TABLE `tmp_sampledata` (

  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT,

  `username` varchar(32) DEFAULT NULL,

  `passwd` varchar(32) DEFAULT NULL,

  `email` varchar(64) DEFAULT NULL,

  `nickname` varchar(32) DEFAULT NULL,

  `siteid` varchar(32) DEFAULT NULL,

  `src` smallint(6) NOT NULL DEFAULT ‘0′,

  PRIMARY KEY (`id`,`src`)

  ) ENGINE=MyISAM AUTO_INCREMENT=95660181 DEFAULT CHARSET=gbk

  /*!50500 PARTITION BY LIST COLUMNS(src)

  SUBPARTITION BY HASH (id)

  SUBPARTITIONS 5

  (PARTITION pose VALUES IN (1) ENGINE = MyISAM,

  PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,

  PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,

  PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,

  PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,

  PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,

  PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,

  PARTITION p62678 VALUES IN (8) ENGINE = MyISAM) */

  对于拥有分区及子分区的数据表,分区条件(包括子分区条件)中使用的数据列,都应该定义在primary key 或者 unique key中。详细的分区定义格式,可以参考MySQL的文档。上面的结构是第一稿的存储方式(后文还将进行修改)。采用load data infile的方式加载,用时30分钟加载8千万记录。感觉还是挺快的(bulk_insert_buffer_size=8m)。

  基本查询优化

  数据装载完毕后,我们测试了一个查询:

  复制代码 代码如下:

  mysql explain select * from tmp_sampledata where id=9562468G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tmp_sampledata

  type: ref

  possible_keys: PRIMARY

  key: PRIMARY

  key_len: 8

  ref: const

  rows: 8

  Extra:

  1 row in set (0.00 sec)

  这是毋庸置疑的,通过id进行查询是使用了主键,查询速度会很快。但是这样的做法几乎没有意义。因为对于终端用户来说,不可能知晓任何的资料的id的。假如需要按照username来进行查询的话:

  复制代码 代码如下:

  mysql explain select * from tmp_sampledata where username = ‘yourusername‘G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tmp_sampledata

  type: ALL

  possible_keys: NULL

  key: NULL

  key_len: NULL

  ref: NULL

  rows: 74352359

  Extra: Using where

  1 row in set (0.00 sec)

  mysql explain select * from tmp_sampledata where src between 1 and 7 and username = ‘yourusername‘G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tmp_sampledata

  type: ALL

  possible_keys: NULL

  key: NULL

  key_len: NULL

  ref: NULL

  rows: 74352359

  Extra: Using where

  1 row in set (0.00 sec)

  那这个查询就没法用了。根本就没人能等待一个上亿表的全表搜索!这是我们就考虑是否给username创建一个索引,这样肯定会提高查询速度:

  create index idx_username on tmp_sampledata(username);

  这个创建索引的时间很久,似乎超过了数据装载时间,不过好歹建好了。

  复制代码 代码如下:

  mysql explain select * from tmp_sampledata2 where username = ‘yourusername‘G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tmp_sampledata2

  type: ref

  possible_keys: idx_username

  key: idx_username

  key_len: 66

  ref: const

  rows: 80

  Extra: Using where

  1 row in set (0.00 sec)

  和预期的一样,这个查询使用了索引,查询速度在可接受范围内。

  但是这带来了另外一个问题:创建索引需要而外的空间!!当我们对username和email都创建索引时,空间的使用大幅度的提升!这同样不是我们期望看到的(无奈的选择?)。

  除了使用索引,并保证其在查询中能使用到此索引外,分区的关键字段是一个很重要的优化因素,比如下面的这个例子:

  复制代码 代码如下:

  mysql explain select id from tsampledata where username=‘abcdef‘G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tsampledata

  type: ref

  possible_keys: idx_sampledata_username

  key: idx_sampledata_username

  key_len: 66

  ref: const

  rows: 80

  Extra: Using where

  1 row in set (0.00 sec)

  mysql explain select id from tsampledata where username=‘abcdef‘ and src in (2,3,4,5)G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tsampledata

  type: ref

  possible_keys: idx_sampledata_username

  key: idx_sampledata_username

  key_len: 66

  ref: const

  rows: 40

  Extra: Using where

  1 row in set (0.01 sec)

  mysql explain select id from tsampledata where username=‘abcdef‘ and src in (2)G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tsampledata

  type: ref

  possible_keys: idx_sampledata_username

  key: idx_sampledata_username

  key_len: 66

  ref: const

  rows: 10

  Extra: Using where

  1 row in set (0.00 sec)

  mysql explain select id from tsampledata where username=‘abcdef‘ and src in (2,3)G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: tsampledata

  type: ref

  possible_keys: idx_sampledata_username

  key: idx_sampledata_username

  key_len: 66

  ref: const

  rows: 20

  Extra: Using where

  1 row in set (0.00 sec)

  同一个查询语句在根据是否针对分区限定做查询时,查询成本相差很大:

  where username=‘abcdef‘ rows: 80

  where username=‘abcdef‘ and src in (2,3,4,5) rows: 40

  where username=‘abcdef‘ and src in (2) rows: 10

  where username=‘abcdef‘ and src in (2,3) rows: 20

  从分析中看出,当根据src(分区表的分区字段)进行查询限定时,被影响的数目(rows)在发生着变化。rows:80代表着需要对8个分区进行搜索。

  改进数据存储:另一种分区格式

  既然在统计应用中,最多用的是通过username, email进行数据查询,那么在表存储时,应该考虑使用username,email进行分区,而不是通过id。因此重新创建分区表,导入数据:

  复制代码 代码如下:

  CREATE TABLE `tmp_sampledata` (

  `id` bigint(20) unsigned NOT NULL,

  `username` varchar(32) NOT NULL DEFAULT ”,

  `passwd` varchar(32) DEFAULT NULL,

  `email` varchar(64) NOT NULL DEFAULT ”,

  `nickname` varchar(32) DEFAULT NULL,

  `siteid` varchar(32) DEFAULT NULL,

  `src` smallint(6) NOT NULL DEFAULT ‘0′,

  primary KEY (`src`,`username`,`email`, `id`)

  ) ENGINE=MyISAM DEFAULT CHARSET=gbk

  PARTITION BY LIST COLUMNS(src)

  SUBPARTITION BY KEY (username,email)

  SUBPARTITIONS 10

  (PARTITION pose VALUES IN (1) ENGINE = MyISAM,

  PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,

  PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,

  PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,

  PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,

  PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,

  PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,

  PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;

  这个定义没什么问题,按照预期,它将根据primary key来进行数据表分区。但是这有一个非常非常严重的性能问题:数据在load data infile的时候,同时对数据进行索引创建。这大大延长了数据装载时间,同样是不可忍受的情况。上面这个例子,如果建表时启用了 primary key 或者 unique key, 在我的测试系统上,load data infile执行了超过12小时。而下面这个:

  复制代码 代码如下:

  CREATE TABLE `tmp_sampledata` (

  `id` bigint(20) unsigned NOT NULL,

  `username` varchar(32) NOT NULL DEFAULT ”,

  `passwd` varchar(32) DEFAULT NULL,

  `email` varchar(64) NOT NULL DEFAULT ”,

  `nickname` varchar(32) DEFAULT NULL,

  `siteid` varchar(32) DEFAULT NULL,

  `src` smallint(6) NOT NULL DEFAULT ‘0′

  ) ENGINE=MyISAM DEFAULT CHARSET=gbk

  PARTITION BY LIST COLUMNS(src)

  SUBPARTITION BY KEY (username,email)

  SUBPARTITIONS 10

  (PARTITION pose VALUES IN (1) ENGINE = MyISAM,

  PARTITION p2736 VALUES IN (2) ENGINE = MyISAM,

  PARTITION p736736 VALUES IN (3) ENGINE = MyISAM,

  PARTITION p3838648 VALUES IN (4) ENGINE = MyISAM,

  PARTITION p842692 VALUES IN (5) ENGINE = MyISAM,

  PARTITION p7575 VALUES IN (6) ENGINE = MyISAM,

  PARTITION p386386 VALUES IN (7) ENGINE = MyISAM,

  PARTITION p62678 VALUES IN (8) ENGINE = MyISAM)?;

  数据装载仅仅用了5分钟:

  mysql load data infile ‘cvsfile.txt‘ into table tmp_sampledata fields terminated by ‘ ‘ escaped by ”;

  Query OK, 74352359 rows affected, 65535 warnings (5 min 23.67 sec)

  Records: 74352359 Deleted: 0 Skipped: 0 Warnings: 51267046

  So,所有的问题,又回到了2.上

  测试查询中的模糊搜索

  对于创建好索引的大数据表,一般般的针对性的查询,应该可以满足需要。但是有些查询可能不能通过索引来发挥效率,比如查询以 163.com 结尾的邮箱:

  select … from … where email like ‘%163.com‘

  即便数据针对 email 建立有索引,上面的查询是用不到那个索引的。如果我们使用的是 oracle,那么还可以建立一个反向索引,但是mysql不支持反向索引。所以如果发生类似的查询,只有两种方案可以:

  通过数据冗余,把需要的字段反转一遍另外保存,并创建一个索引

  这样上面的那个查询可以通过 where email like ‘moc.361%‘ 来完成,但是这个成本(存储、更新)太高昂了

  通过全文检索fulltext来实现。不过mysql同样在分区表上不支持fulltext(或许等待以后的版本吧。)

  自己做分词fulltext

  没有最终方案

  创建一个不含任何索引、键的分区表;

  导入数据;

  创建索引;

  因为创建索引要花很久时间,此处做了个小小调整,提高myisam索引的排序空间为1G(默认是8m):

  mysql set myisam_sort_buffer_size=1048576000;

  Query OK, 0 rows affected (0.00 sec)

  mysql create index idx_username_src on tmp_sampledata (username,src);

  Query OK, 74352359 rows affected (7 min 13.11 sec)

  Records: 74352359 Duplicates: 0 Warnings: 0

  mysql create index idx_email_src on tmp_sampledata (email,src);

  Query OK, 74352359 rows affected (10 min 48.30 sec)

  Records: 74352359 Duplicates: 0 Warnings: 0

  mysql create index idx_src_username_email on tmp_sampledata(src,username,email);

  Query OK, 74352359 rows affected (16 min 5.35 sec)

  Records: 74352359 Duplicates: 0 Warnings: 0

  实际应用中,此表可能不需要这么多索引的,都建立一遍,只是为了展示一下创建的速度而已。

  实际应用中的效果

  存储的问题暂时解决到这里了,接下来经过了一系列的服务器参数调整以及查询的优化,我只能做到在这个超过9千万数据中的查询响应速度控制在1到20毫秒。听上去是个不错的成绩。但是当我们的系统有超过几百个人同时使用时,仍然显的力不从心。或许日后还有机会能更优化这个存储与查询。让我慢慢期待吧。

?

 

以上是关于mysql 超大数据/表管理技巧的主要内容,如果未能解决你的问题,请参考以下文章

纯干货小技巧遗忘MySQL用户密码怎么办?

本周直播EXCEL技巧和项目管理实战技巧

spring可能带来的一个深坑,附小技巧

  中国菜刀使用方法以及小技巧

15 个有用的 MySQL/MariaDB 性能调整和优化技巧

15 个有用的 MySQL/MariaDB 性能调整和优化技巧