爬虫 scrapy 分布式
Posted zzy7372
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬虫 scrapy 分布式相关的知识,希望对你有一定的参考价值。
scrapy_redis
1. scrapy startproject chouti
2. cd chouti
3. scrapy genspider -t crawl chouti www.baidu.com
setting.py
LOG_LEVEL = 'ERROR'
# 日志文件等级
ROBOTSTXT_OBEY = False
# 不遵循robots协议
USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/72.0.3626.119 Safari/537.36'
# UA伪装
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
class ChoutiSpider(CrawlSpider):
# name = 'chouti'
# # allowed_domains = ['www.xxx.com']
# start_urls = ['https://dig.chouti.com/r/scoff/hot/1']
#
# #连接提取器:
# #allow:表示的就是链接提取器提取连接的规则(正则)
# link = LinkExtractor(allow=r'/r/scoff/hot/d+')
#
# rules = (
# #规则解析器:将链接提取器提取到的连接所对应的页面数据进行指定形式的解析
# Rule(link, callback='parse_item', follow=True),
# # 让连接提取器继续作用到链接提取器提取到的连接所对应的页面中
# )
#
# def parse_item(self, response):
# print(response)
name = 'qiubai'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/pic/']
# 连接提取器:
# allow:表示的就是链接提取器提取连接的规则(正则)/pic/page/3?s=5172496
link = LinkExtractor(allow=r'/pic/page/d+?s=d+')
link1 = LinkExtractor(allow=r'/pic/$')
# link1 = LinkExtractor(allow=r'')
rules = (
# 规则解析器:将链接提取器提取到的连接所对应的页面数据进行指定形式的解析
Rule(link, callback='parse_item', follow=True),
# 让连接提取器继续作用到链接提取器提取到的连接所对应的页面中
Rule(link1, callback='parse_item', follow=True),
)
def parse_item(self, response):
print(response)
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from redis import Redis
from increment1_Pro.items import Increment1ProItem
class MovieSpider(CrawlSpider):
name = 'movie'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.4567tv.tv/index.php/vod/show/id/7.html']
rules = (
Rule(LinkExtractor(allow=r'/index.php/vod/show/id/7/page/d+.html'), callback='parse_item', follow=True),
)
def parse_item(self, response):
conn = Redis(host='127.0.0.1',port=6379)
detail_url_list = 'https://www.4567tv.tv'+response.xpath('//li[@class="col-md-6 col-sm-4 col-xs-3"]/div/a/@href').extract()
for url in detail_url_list:
#ex == 1:set中没有存储url
ex = conn.sadd('movies_url',url)
if ex == 1:
yield scrapy.Request(url=url,callback=self.parse_detail)
else:
print('网站没有更新数据,暂无新数据可爬!')
def parse_detail(self,response):
item = Increment1ProItem()
item['name'] = response.xpath('/html/body/div[1]/div/div/div/div[2]/h1/text()').extract_first()
item['actor'] = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[3]/a/text()').extract_first()
yield item
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from increment2_Pro.items import Increment2ProItem
from redis import Redis
import hashlib
class QiubaiSpider(CrawlSpider):
name = 'qiubai'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
rules = (
Rule(LinkExtractor(allow=r'/text/page/d+/'), callback='parse_item', follow=True),
)
def parse_item(self, response):
div_list = response.xpath('//div[@class="article block untagged mb15 typs_hot"]')
conn = Redis(host='127.0.0.1',port=6379)
for div in div_list:
item = Increment2ProItem()
item['content'] = div.xpath('.//div[@class="content"]/span//text()').extract()
item['content'] = ''.join(item['content'])
item['author'] = div.xpath('./div/a[2]/h2/text() | ./div[1]/span[2]/h2/text()').extract_first()
source = item['author']+item['content']
#自己制定了一种形式的数据指纹
hashValue = hashlib.sha256(source.encode()).hexdigest()
ex = conn.sadd('qiubai_hash',hashValue)
if ex == 1:
yield item
else:
print('没有更新数据可爬!!!')
1.请求传参(item):
- 应用场景:解析的数据不在同一张页面中
- Request(callback,meta={})
2.LOG_LEVEL LOG_FILE
3.下载中间件:
- 批量拦截请求(代理ip和UA)和响应(处理页面数据)
4.如何在scrapy使用selenium
1.在spider的init方法中实例化一个浏览器对象
2.在spider的closed方法中关闭浏览器对象
3.在下载中间件类的process_response方法中接收spider中的浏览器对象
4.处理执行相关自动化操作(发起请求,获取页面数据)
5.实例化一个新的响应对象(from scrapy.http import HtmlResponse),且将页面数据存储到该对象中
6.返回新的响应对象
7.在配置文件中开启中间件
5.如何提升scrapy爬取数据的效率:
增加并发:
默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
降低日志级别:
在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO’
禁止cookie:
如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
禁止重试:
对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
减少下载超时:
如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s
以上是关于爬虫 scrapy 分布式的主要内容,如果未能解决你的问题,请参考以下文章
python3下scrapy爬虫(第十四卷:scrapy+scrapy_redis+scrapyd打造分布式爬虫之执行)