TRAC-IK机器人运动学求解器

Posted 21207-ihome

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TRAC-IK机器人运动学求解器相关的知识,希望对你有一定的参考价值。

   TRAC-IK和Orocos KDL类似,也是一种基于数值解的机器人运动学求解器,但是在算法层面上进行了很多改进,相比KDL求解效率(成功率和计算时间)高了很多。下面在Ubuntu16.04中安装TRAC-IK(之前已经安装过ROS Kinetic):

sudo apt-get install ros-kinetic-trac-ik

  按照ROS教程新建一个名为ik_test的Package,并创建urdf文件夹用于存放机器人URDF描述文件,创建launch文件夹存放launch文件:

技术图片

  参考trac_ik_examples修改package.xml以及CMakeLists.txt文件,添加TRAC-IK以及KDL的支持。编写一个简单的robot.urdf文件,joint1为与基座link0相连的基关节,joint3为末端关节:

技术图片
<robot name="test_robot">
    <link name="link0" />
    <link name="link1" />
    <link name="link2" />
    <link name="link3" />

    <joint name="joint1" type="continuous">
        <parent link="link0"/>
        <child link="link1"/>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <axis xyz="1 0 0" />
    </joint>

    <joint name="joint2" type="continuous">
        <parent link="link1"/>
        <child link="link2"/>
        <origin xyz="0 0 1" rpy="0 0 0" />
        <axis xyz="1 0 0" />
    </joint>

    <joint name="joint3" type="continuous">
        <parent link="link2"/>
        <child link="link3"/>
        <origin xyz="0 0 1" rpy="0 0 0" />
        <axis xyz="1 0 0" />
    </joint>

</robot>
View Code

技术图片

  TRAC-IK求解机器人逆运动学函数为CartToJnt:

int CartToJnt(const KDL::JntArray &q_init, const KDL::Frame &p_in, KDL::JntArray &q_out, const KDL::Twist& bounds=KDL::Twist::Zero());

  第一个参数q_init为关节的初始值,p_in为输入的末端Frame,q_out为求解输出的关节值。基本用法如下:

#include <trac_ik/trac_ik.hpp>

TRAC_IK::TRAC_IK ik_solver(KDL::Chain chain, KDL::JntArray lower_joint_limits, KDL::JntArray upper_joint_limits, double timeout_in_secs=0.005, double error=1e-5, TRAC_IK::SolveType type=TRAC_IK::Speed);  

% OR

TRAC_IK::TRAC_IK ik_solver(string base_link, string tip_link, string URDF_param="/robot_description", double timeout_in_secs=0.005, double error=1e-5, TRAC_IK::SolveType type=TRAC_IK::Speed);  

% NOTE: The last arguments to the constructors are optional.
% The type can be one of the following: 
% Speed: returns very quickly the first solution found
% Distance: runs for the full timeout_in_secs, then returns the solution that minimizes SSE from the seed
% Manip1: runs for full timeout, returns solution that maximizes sqrt(det(J*J^T))
% Manip2: runs for full timeout, returns solution that minimizes cond(J) = |J|*|J^-1|

int rc = ik_solver.CartToJnt(KDL::JntArray joint_seed, KDL::Frame desired_end_effector_pose, KDL::JntArray& return_joints, KDL::Twist tolerances);

% NOTE: CartToJnt succeeded if rc >=0   

% NOTE: tolerances on the end effector pose are optional, and if not
% provided, then by default are 0.  If given, the ABS() of the
% values will be used to set tolerances at -tol..0..+tol for each of
% the 6 Cartesian dimensions of the end effector pose.

 

  下面是一个简单的测试程序,先通过KDL计算正解,然后使用TRAC-IK反算逆解:

技术图片
#include "ros/ros.h"
#include <trac_ik/trac_ik.hpp>

#include <kdl/chainiksolverpos_nr_jl.hpp>
#include <kdl/chain.hpp>
#include <kdl/chainfksolver.hpp>
#include <kdl/chainfksolverpos_recursive.hpp>
#include <kdl/frames_io.hpp>

using namespace KDL;


int main(int argc, char **argv)
{
    ros::init(argc, argv, "ik_test");
    ros::NodeHandle nh("~");

    int num_samples;
    std::string chain_start, chain_end, urdf_param;
    double timeout;
    const double error = 1e-5;

    nh.param("chain_start", chain_start, std::string(""));
    nh.param("chain_end", chain_end, std::string(""));

    if (chain_start=="" || chain_end=="") {
        ROS_FATAL("Missing chain info in launch file");
        exit (-1);
    }

    nh.param("timeout", timeout, 0.005);
    nh.param("urdf_param", urdf_param, std::string("/robot_description"));

    if (num_samples < 1)
        num_samples = 1;


    TRAC_IK::TRAC_IK ik_solver(chain_start, chain_end, urdf_param, timeout, error, TRAC_IK::Speed);  

    KDL::Chain chain;
    bool valid = ik_solver.getKDLChain(chain);

    if (!valid) {
        ROS_ERROR("There was no valid KDL chain found");
        return -1;
    }


    // Set up KDL IK
    KDL::ChainFkSolverPos_recursive fk_solver(chain); // Forward kin. solver based on kinematic chain

    // Create joint array
    unsigned int nj = chain.getNrOfJoints();
    ROS_INFO ("Using %d joints",nj);
    KDL::JntArray jointpositions = JntArray(nj);

   // Assign some values to the joint positions
    for(unsigned int i=0;i<nj;i++){
        float myinput;
        printf ("Enter the position of joint %i: ",i);
        scanf ("%e",&myinput);
        jointpositions(i)=(double)myinput;
    }

    // Create the frame that will contain the results
    KDL::Frame cartpos;    

    // Calculate forward position kinematics
    bool kinematics_status;
    kinematics_status = fk_solver.JntToCart(jointpositions,cartpos);

    Vector p = cartpos.p;   // Origin of the Frame
    Rotation M = cartpos.M; // Orientation of the Frame
    
    double roll, pitch, yaw;    
    M.GetRPY(roll,pitch,yaw);

    if(kinematics_status>=0){
        printf("%s 
","KDL FK Succes");
        std::cout <<"Origin: " << p(0) << "," << p(1) << "," << p(2) << std::endl;
        std::cout <<"RPY: " << roll << "," << pitch << "," << yaw << std::endl;
        
    }else{
        printf("%s 
","Error: could not calculate forward kinematics :(");
    }

    
    KDL::JntArray joint_seed(nj);
    KDL::SetToZero(joint_seed);
    KDL::JntArray result(joint_seed);
   
    int rc=ik_solver.CartToJnt(joint_seed,cartpos,result);
    if(rc < 0)
        printf("%s 
","Error: could not calculate forward kinematics :(");
    else{
        printf("%s 
","TRAC IK Succes");
        for(unsigned int i = 0; i < nj; i++)
            std::cout << result(i) << " ";
    }

    return 0;
}
View Code

  test.launch文件如下:  

技术图片
<?xml version="1.0"?>
<launch>
  <arg name="chain_start" default="link0" />
  <arg name="chain_end"   default="link3" />
  <arg name="timeout" default="0.005" />

  <param name="robot_description" textfile="$(find ik_test)/urdf/robot.urdf" />


  <node name="ik_test" pkg="ik_test" type="ik_test" output="screen">  
    <param name="chain_start" value="$(arg chain_start)"/>
    <param name="chain_end" value="$(arg chain_end)"/>
    <param name="timeout" value="$(arg timeout)"/>
    <param name="urdf_param" value="/robot_description"/>
  </node>


</launch>
View Code

  使用catkin_make编译成功,并设置环境后,运行该程序

roslaunch ik_test test.launch 

  通过键盘分别输入三个关节值:0,1.5708(90°),0  运动学正逆解计算结果如下图所示:

技术图片

 

 

 

 

参考:

trac_ik

trac_ik_examples

KDL Geometric primitives

API reference of the Kinematics and Dynamics Library

机械臂运动学逆解(Analytical solution)

orocos_kdl学习(一):坐标系变换

orocos_kdl学习(二):KDL Tree与机器人运动学

MoveIt!中的运动学插件

以上是关于TRAC-IK机器人运动学求解器的主要内容,如果未能解决你的问题,请参考以下文章

MoveIt运动规划-1

优化求解水母搜索优化器JS算法matlab源码

完整UR机械臂逆运动学求解过程及c++代码实现

Android 逆向使用 Python 解析 ELF 文件 ( Capstone 反汇编 ELF 文件中的机器码数据 | 创建反汇编解析器实例对象 | 设置汇编解析器显示细节 )(代码片段

ROS系统MoveIt玩转双臂机器人系列--浅议机器人运动学与D-H建模

matlab机械臂五次多项式仿真出错