八大经典排序算法的代码实现

Posted greatlong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了八大经典排序算法的代码实现相关的知识,希望对你有一定的参考价值。

冒泡排序:

技术图片
 1 //冒泡排序
 2 //时间复杂度为O(N^2),空间复杂度为O(N)
 3 public class BubbleSort {
 4     public static void bubbleSort(int[] arr) {
 5         if (arr.length == 0 || arr.length == 1) {
 6             return;
 7         } else {
 8 //            随着每轮比较的进行,都有一个大数沉到后面排好序,因此外层的循环长度应该递减
 9             for (int end = arr.length - 1; end > 0; end--) {
10                 for (int i = 0; i < end; i++) {
11                     if (arr[i] > arr[i + 1]) {
12                         swap(arr, i, i + 1);
13                     }
14                 }
15             }
16         }
17 
18     }
19 
20     static void swap(int[] arr, int i, int j) {
21 //        不利用第三个变量交换两变量的位置。1.a和同一个数异或运算两次得到a本身 2.异或运算满足交换律
22         arr[j] = arr[j] ^ arr[i];
23         arr[i] = arr[j] ^ arr[i];
24         arr[j] = arr[j] ^ arr[i];
25     }
26 
27     public static void main(String[] args) {
28         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
29         bubbleSort(a);
30         for(int i:a)
31             System.out.print(i+",");
32     }
33 }
冒泡排序

插入排序:

技术图片
 1 //插入排序
 2 //复杂度和数据状况有关系,如果本来数组的有序性就比较好则复杂度低
 3 public class InsertSort {
 4     public static void insertSort(int[] arr) {
 5         if (arr == null || arr.length < 2) {
 6             return;
 7         } else {
 8             for (int i = 1; i < arr.length; i++) {
 9 //如果数组的有序性比较好,如1,2,3,4,5,则arr[j + 1] < arr[j]这个条件可以使得比较提前终止,
10 //如果数组刚好是逆序的,如5,4,3,2,1,则需要从j一直比较到i=0;
11                 for (int j = i - 1; j >= 0 && arr[j + 1] < arr[j]; j--) {
12                     swap(arr, j, j + 1);
13                 }
14             }
15         }
16     }
17 
18     static void swap(int[] arr, int i, int j) {
19         arr[j] = arr[j] ^ arr[i];
20         arr[i] = arr[j] ^ arr[i];
21         arr[j] = arr[j] ^ arr[i];
22     }
23 
24     public static void main(String[] args) {
25         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
26         insertSort(a);
27         for (int i : a)
28             System.out.print(i + ",");
29     }
30 }
插入排序

选择排序:

技术图片
 1 //选择排序
 2 //时间复杂度为O(N^2),空间复杂度为O(1)
 3 public class SelectionSort {
 4     public static void selectionSort(int[] arr) {
 5         if (arr == null || arr.length < 2) {
 6             return;
 7         } else {
 8 //            每轮都从未排序的数列中取出一个数,将其与后面所有未排序的数作比较,得到这些未排序数列里面的最小数,将它换到已排好序数列的后面,并扩大已排好序数列的范围。
 9             for (int i = 0; i < arr.length - 1; i++) {
10                 int minIndex = i;
11 //                i = 0作为第一个已排序列
12                 for (int j = i + 1; j < arr.length; j++) {
13                     minIndex = arr[j] < arr[minIndex] ? j : minIndex;
14                 }
15                 swap(arr, i, minIndex);
16             }
17         }
18     }
19 
20     static void swap(int[] arr, int i, int j) {
21 //        此处不能用异或来完成交换,因为如果i=j, 两个相同的数异或等于0,“arr[j] = arr[j] ^ arr[i]”会将arr[i]和arr[j]同时置为0,这样就丢失了所有信息。
22 //        如果i和j不相等,但a[i]==a[j]是可以完成异或交换功能的,因为0和任何数异或等于其本身
23 //        arr[j] = arr[j] ^ arr[i];
24 //        arr[i] = arr[j] ^ arr[i];
25 //        arr[j] = arr[j] ^ arr[i];
26         int tmp = arr[i];
27         arr[i] = arr[j];
28         arr[j] = tmp;
29     }
30 
31     public static void main(String[] args) {
32         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
33         selectionSort(a);
34         for (int i : a)
35             System.out.print(i + ",");
36     }
37 }
选择排序

归并排序:

技术图片
 1 //归并排序
 2 //时间复杂度O(NlogN),空间复杂度O(N)
 3 //分治+外排的方法
 4 public class MergeSort {
 5     public static void mergeSort(int[] arr) {
 6         if (arr == null || arr.length < 2)
 7             return;
 8         else
 9             sortProcess(arr, 0, arr.length - 1);
10     }
11 
12     private static void sortProcess(int[] arr, int L, int R) {
13         if (L == R)
14             return;
15         else {
16             int mid = L + ((R - L) >> 1);
17 //            根据Master公式求其时间复杂度:
18             sortProcess(arr, L, mid);//T(N/2)
19             sortProcess(arr, mid + 1, R);//T(N/2)
20             merge(arr, L, mid, R);//O(N)
21 //            根据Master公式,其时间复杂度为T(N) = 2T(N/2)+O(N) = N*logN
22         }
23     }
24 
25     //融合两个有序数组,使之成为一个更大的有序数组的方法,叫做外排
26     private static void merge(int[] arr, int l, int mid, int r) {
27 //        空间复杂度O(体现在需要一个大小为数据量N的辅助数组help上)
28         int[] help = new int[r - l + 1];
29         int i = 0;
30         int p1 = l;
31         int p2 = mid + 1;
32         while (p1 <= mid && p2 <= r)
33             help[i++] = arr[p1]<=arr[p2]?arr[p1++]:arr[p2++];
34 //        两个必有且只有一个越界
35         while(p1<=mid)
36             help[i++] = arr[p1++];
37         while(p2<=r)
38             help[i++] = arr[p2++];
39 
40         i = 0;
41         while(l<=r)
42             arr[l++] = help[i++];
43     }
44 
45     public static void main(String[] args) {
46         int[] a = {2, 1, 7, 10, 3, 9, 5, 4, 6, 8};
47         mergeSort(a);
48         for(int i:a)
49             System.out.print(i+",");
50     }
51 }
View Code

快速排序:

技术图片
 1 import java.util.Arrays;
 2 
 3 //快排
 4 //时间复杂度最好为O(NlogN). 数组逆序的时候最差,时间复杂度为O(N^2),可以通过随机快排的方式使得其长期时间复杂度期望为O(N*logN)
 5 //空间复杂度最好为O(logN),数组逆序的时候最差,空间复杂度为O(N),额外空间主要是每次partition函数返回的二元数组造成的。
 6 //通过随机快排的方式使得其长期时间复杂度期望为O(logN)
 7 //所有递归函数都可以改为非递归版本,因为递归的本质行为是系统在帮我们压栈。改为非递归就是改成我们自己来压栈
 8 // 在工程上是不允许递归行为存在的,因为递归过深可能会导致系统栈爆满,系统不稳定。因此工程上的快排都是非递归版本实现的。
 9 //库函数都是高度优化过的
10 public class QuickSort {
11 
12     static void quickSort(int[] arr, int L, int R) {
13         if (L < R) {
14 //            随机快排, 每次将中间随机一个数和数列最后一个元素交换位置,放置逆序数列产生差的结果
15             swap(arr, L + (int) (Math.random() * (R - L + 1)), R);
16             int[] p = partition(arr, L, R);
17             quickSort(arr, L, p[0] - 1);
18             quickSort(arr, p[1] + 1, R);
19         }
20     }
21 
22     static int[] partition(int[] arr, int L, int R) {
23         int less = L - 1;
24         int more = R;
25         int cur = L;
26 //        以arr[R]作为基准,有了随机快排,这里的arr[R]被重新洗牌
27 //        这里一次性处理了大于基准等于基准和小于基准的三种情况,速度比传统快排要快
28         while (cur < more) {
29             if (arr[cur] < arr[R]) {
30                 // cur++,因为换到cur位置上的一定是比基准arr[R]小的数,直接将其扩到less范围去,且cur指向下一位置
31                 swap(arr, ++less, cur++);
32             } else if (arr[cur] > arr[R]) {
33                 //交换到cur位置上的数大小位置,交换过去的数一定大于基准arr[R], 故more--,将其扩到more区域, 但cur位置不变
34                 swap(arr, --more, cur);
35             } else {
36                 //当前位置和基准arr[R]相等,不扩到less区域和more区域,放在相等区域
37                 cur++;
38             }
39         }
40         //最后将基准交换到more区域的下一位置
41         swap(arr, more, R);
42        // 返回相等区域下标,注意此时more位置上是交换过来的基准值,不用加1
43         return new int[]{less + 1, more};
44     }
45 
46     static void swap(int[] arr, int i, int j) {
47         int tmp = arr[i];
48         arr[i] = arr[j];
49         arr[j] = tmp;
50     }
51 
52     public static void main(String[] args) {
53         int a[] = {49, 38, 65, 97, 76, 13, 27, 49};
54         quickSort(a, 0, a.length - 1);
55         System.out.println(Arrays.toString(a));
56     }
57 }
快排

堆排序:

技术图片
 1 import java.util.Arrays;
 2 
 3 //堆排序
 4 //堆是完全二叉树
 5 //二叉树的底层可以用线性的结构来储存,也就是说可以用数组来储存一个二叉树,通过数组中下标的关系来表示这个堆。设完全二叉树的一个节点在数组中的下标为i,
 6 //则其父节点的下标应该为(i-1)/2,其左孩子节点应该是2*i+1, 其右孩子节点应该为2*i+2
 7 public class HeapSort {
 8     static void heapSort(int[] arr) {
 9         if (arr == null || arr.length < 2)
10             return;
11         else
12             for (int i = 0; i < arr.length; i++)
13                 heapInsert(arr, i);
14 
15         int heapSize = arr.length;//堆的大小等于数组的长度
16         //交换堆顶和最后一个元素
17         swap(arr, 0, --heapSize);
18         while (heapSize > 0) {
19             heapify(arr, 0, heapSize);
20             swap(arr, 0, --heapSize);
21         }
22     }
23 
24     static void heapInsert(int[] arr, int index) {
25         while (arr[(index - 1) / 2] < arr[index]) {//如果index=0, -1/2=0是根节点
26             swap(arr, index, (index - 1) / 2);
27             index = (index - 1) / 2;
28         }
29 
30     }
31 
32     //    如果堆中有某个元素变小了,将这个元素下沉以保持大根堆的过程heapify
33     static void heapify(int[] arr, int index, int heapSize) {
34         int left = index * 2 + 1;//在用数组存储的堆中,节点i的左孩子节点是2*i+1, 右节点是2*i+2;
35         //这里heapSize是最后一个元素,做堆排的时候,因为是从堆顶交换来的最大值,所以重新heapify要把它排除在外;
36         while (left < heapSize) {
37             int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
38             largest = arr[index] > arr[largest] ? index : largest;
39             if (largest == index) {
40                 break;
41             }
42             swap(arr, largest, index);
43             index = largest;
44             left = index * 2 + 1;
45         }
46     }
47 
48     static void swap(int[] arr, int i, int j) {
49         int tmp = arr[i];
50         arr[i] = arr[j];
51         arr[j] = tmp;
52     }
53 
54     public static void main(String[] args) {
55         int a[] = {49, 38, 65, 97, 76, 13, 27, 49};
56         heapSort(a);
57         System.out.println(Arrays.toString(a));
58     }
59 }
堆排序

希尔排序:

基数排序:

 

以上是关于八大经典排序算法的代码实现的主要内容,如果未能解决你的问题,请参考以下文章

数据结构初阶第九篇——八大经典排序算法总结(图解+动图演示+代码实现+八大排序比较)

数据结构初阶第九篇——八大经典排序算法总结(图解+动图演示+代码实现+八大排序比较)

八大排序算法总结

八大经典排序算法

八大经典排序算法的理解动图演示和C++方法实现

C语言实现八大排序算法