系列 莫比乌斯反演

Posted yyc-jack-0920

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了系列 莫比乌斯反演相关的知识,希望对你有一定的参考价值。

几个有用的结论:

记 $(f*g)(n)=sumlimits_{d|n} f(d) * g(frac{n}{d})$

则有$mu * 1 = [n=1]$与$phi *1 = id$

 

若$F(n)=sumlimits_{d|n} f(d)$

则$f(n)=sumlimits_{d|n} mu(d) * F(frac{n}{d})$

 

bzoj 2190 仪仗队

题目大意:

技术图片

求$n*n$的矩形中能从左下角被直接看到的点的个数

思路:

设左下角$(0,0)$ 则相当于求$sumlimits_{i=1}^{n-1} sumlimits_{j=1}^{n-1} [gcd(i,j)==1]+2$($(1,0),(0,1)$

将式子转化为$1+ 2* sumlimits_{i=1}^{n-1} sumlimits_{j=1}^{i} [gcd(i,j)==1] $(由于有$(1,0),(0,1),(1,1)$三个特殊点存在

然后发现满足欧拉函数的定义,则所求为$1+2* sumlimits_{i=1}^{n-1} phi(i) $ 筛出欧拉函数即可

技术图片
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 50010
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define pb(i,x) vec[i].push_back(x)
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch==-) f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-0;ch=getchar();}
28     return x*f;
29 }
30 int n,tot,p[MAXN+100],ntp[MAXN+100],phi[MAXN+100];
31 void mem()
32 {
33     phi[1]=1;
34     rep(i,2,MAXN)
35     {
36         if(!ntp[i]) p[++tot]=i,phi[i]=i-1;
37         rep(j,1,tot) if(i*p[j]>MAXN) break;
38             else {ntp[i*p[j]]=1;if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]];else {phi[i*p[j]]=phi[i]*p[j];break;}}
39     }
40     rep(i,2,n-1) phi[i]+=phi[i-1];
41 }
42 int main()
43 {
44     n=read();mem();printf("%d
",n>1?phi[n-1]<<1|1:0);
45 }
View Code

 

bzoj 2818 Gcd

题目大意:

求有序数对$(i,j),i,j leq n$满足$gcd(i,j)$为素数的数对个数

思路:

法1:和上一题很相似,设$p$为素数则$sumlimits_{i=1}^n sumlimits_{j=1}^n [gcd(i,j)==p] =sumlimits_{i=1}^{n/p} sumlimits_{j=1}^{n/p} [gcd(i,j)==1]$

这样我们枚举每一个素数就可以解决了

技术图片
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 10001000
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define pb(i,x) vec[i].push_back(x)
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch==-) f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-0;ch=getchar();}
28     return x*f;
29 }
30 int n,tot,p[MAXN],ntp[MAXN+5],phi[MAXN];
31 ll ans,sum[MAXN];
32 void mem()
33 {
34     phi[1]=1;
35     rep(i,2,n)
36     {
37         if(!ntp[i]) p[++tot]=i,phi[i]=i-1;
38         rep(j,1,tot) if(i*p[j]>n) break;
39             else {ntp[i*p[j]]=1;if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]];else {phi[i*p[j]]=phi[i]*p[j];break;}}
40     }
41     rep(i,1,n) sum[i]=sum[i-1]+phi[i];
42 }
43 int main()
44 {
45     n=read();mem();
46     rep(i,1,tot) ans+=sum[n/p[i]]*2-1;printf("%lld
",ans);
47 }
View Code

法2:因为$gcd(i,j)==1$的形式可以转化为$sumlimits_{d|gcd(i,j)} mu(d)$

由于对于每一个$d$,相对应的$i,j$有$n/i,n/j$个。所以前两个枚举是没有必要的,设$m$为$n/p$,式子为$sumlimits_{d=1}^m mu(d)*frac{m}{d}*frac{m}{d}$

枚举素数后数论分块

技术图片
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 10001000
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define pb(i,x) vec[i].push_back(x)
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch==-) f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-0;ch=getchar();}
28     return x*f;
29 }
30 int n,tot,p[MAXN],ntp[MAXN+5],mu[MAXN];
31 ll ans,sum[MAXN];
32 void mem()
33 {
34     mu[1]=1;
35     rep(i,2,n)
36     {
37         if(!ntp[i]) p[++tot]=i,mu[i]=-1;
38         rep(j,1,tot) if(i*p[j]>n) break;
39             else {ntp[i*p[j]]=1;if(i%p[j]) mu[i*p[j]]=-mu[i];else {mu[i*p[j]]=0;break;}}
40     }
41     rep(i,1,n) sum[i]=sum[i-1]+mu[i];
42 }
43 ll solve(int x,ll res=0)
44 {
45     int pos,lmt=n/x;rep(i,1,lmt) {pos=lmt/(lmt/i);res+=1LL*(sum[pos]-sum[i-1])*(lmt/i)*(lmt/i);i=pos;}
46     return res;
47 }
48 int main()
49 {
50     n=read();mem();    
51     rep(i,1,tot) ans+=solve(p[i]);printf("%lld
",ans);
52 }
View Code

 

bzoj 1101 Zap

题目大意:

求有序数对$(i,j),ileq a,j leq b$满足$gcd(i,j)==d$的数对个数

思路:

和上一题基本一样

技术图片
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 60100
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define pb(i,x) vec[i].push_back(x)
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch==-) f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-0;ch=getchar();}
28     return x*f;
29 }
30 int n,tot,p[MAXN],ntp[MAXN+5],mu[MAXN];
31 ll ans,sum[MAXN];
32 void mem(int n)
33 {
34     mu[1]=1;
35     rep(i,2,n)
36     {
37         if(!ntp[i]) p[++tot]=i,mu[i]=-1;
38         rep(j,1,tot) if(i*p[j]>n) break;
39             else {ntp[i*p[j]]=1;if(i%p[j]) mu[i*p[j]]=-mu[i];else {mu[i*p[j]]=0;break;}}
40     }
41     rep(i,1,n) sum[i]=sum[i-1]+mu[i];
42 }
43 ll solve(int x,int y,ll res=0)
44 {
45     int pos,lmt=min(x,y);rep(i,1,lmt)
46         {pos=min(x/(x/i),(y/(y/i)));res+=1LL*(sum[pos]-sum[i-1])*(x/i)*(y/i);i=pos;}
47     return res;
48 }
49 int main()
50 {
51     int T=read(),a,b,d;mem(50010);while(T--)
52         {a=read(),b=read(),d=read();printf("%lld
",solve(a/d,b/d));}
53 }
View Code

 

bzoj 4804 欧拉心算

题目大意:

求$sumlimits_i^n sumlimits_i^n phi(gcd(i,j))$

思路:

枚举$gcd$ 得到$sumlimits_{k=1}^n phi(k) sumlimits_{i=1}^n sumlimits_{j=1}^n [gcd(i,j)==1]$

后面的式子转化为第一题的样子即原式为$sumlimits_{k=1}^n phi(k) (-1+2*sumlimits_{i=1}^{n/k}phi(i))$

设$f(k)=-1+2*sumlimits_{i=1}^k phi(i)$ 则原式为$sumlimits_{k=1}^n phi(k)*f(frac{n}{k})$

使用数论分块即可

技术图片
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cstdlib>
 5 #include<cmath>
 6 #include<algorithm>
 7 #include<queue>
 8 #include<vector>
 9 #include<map>
10 #include<set>
11 #define ll long long
12 #define db double
13 #define inf 2139062143
14 #define MAXN 10000001
15 #define rep(i,s,t) for(register int i=(s),i##__end=(t);i<=i##__end;++i)
16 #define dwn(i,s,t) for(register int i=(s),i##__end=(t);i>=i##__end;--i)
17 #define ren for(register int i=fst[x];i;i=nxt[i])
18 #define pb(i,x) vec[i].push_back(x)
19 #define pls(a,b) (a+b)%MOD
20 #define mns(a,b) (a-b+MOD)%MOD
21 #define mul(a,b) (1LL*(a)*(b))%MOD
22 using namespace std;
23 inline int read()
24 {
25     int x=0,f=1;char ch=getchar();
26     while(!isdigit(ch)) {if(ch==-) f=-1;ch=getchar();}
27     while(isdigit(ch)) {x=x*10+ch-0;ch=getchar();}
28     return x*f;
29 }
30 int n,tot,p[MAXN],ntp[MAXN];
31 ll ans,phi[MAXN],f[MAXN];
32 void mem(int n)
33 {
34     phi[1]=1;
35     rep(i,2,n)
36     {
37         if(!ntp[i]) p[++tot]=i,phi[i]=i-1;
38         rep(j,1,tot) if(i*p[j]>n) break;
39             else {ntp[i*p[j]]=1;if(i%p[j]) phi[i*p[j]]=phi[i]*phi[p[j]];else {phi[i*p[j]]=phi[i]*p[j];break;}}
40     }
41     rep(i,1,n) phi[i]+=phi[i-1],f[i]=-1+(phi[i]<<1);
42 }
43 ll solve(int n,ll res=0)
44 {
45     int pos;rep(i,1,n) {pos=n/(n/i);res+=1LL*(phi[pos]-phi[i-1])*f[n/i];i=pos;}return res;
46 }
47 int main()
48 {
49     int T=read(),a,b,d;mem(10000000);while(T--)
50         {a=read();printf("%lld
",solve(a));}
51 }
View Code

(卡我一个数组的空间常数怕不是有毒

 

以上是关于系列 莫比乌斯反演的主要内容,如果未能解决你的问题,请参考以下文章

莫比乌斯反演的莫比乌斯反演的性质

莫比乌斯反演

莫比乌斯反演

数论18——反演定理(莫比乌斯反演)

莫比乌斯反演

莫比乌斯反演总结