tf.reduce_mean

Posted chay

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tf.reduce_mean相关的知识,希望对你有一定的参考价值。

tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值,主要用作降维或者计算tensor的平均值。

reduce_mean(input_tensor,
                axis=None,
                keepdims=False,
                name=None,
                reduction_indices=None)

第一个参数input_tensor: 输入的待降维的tensor;
第二个参数axis: 指定的轴,如果不指定,则计算所有元素的均值;
第三个参数keepdims:是否降维度,设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度;
第四个参数name: 操作的名称;
第五个参数 reduction_indices:在以前版本中用来指定轴,已弃用;

示例1
keepdims=False 时:

import tensorflow as tf

x = [[1,2,3],
      [1,2,3]]

xx = tf.cast(x,tf.float32)

mean_all = tf.reduce_mean(xx, keepdims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keepdims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keepdims=False)


with tf.Session() as sess:
    print("mean_all:",sess.run(mean_all))
    print("mean_0:", sess.run(mean_0))
    print("mean_1:", sess.run(mean_1))

执行结果:

mean_all: 2.0
mean_0: [1. 2. 3.]
mean_1: [2. 2.]

示例2
keepdims=True时:

import tensorflow as tf

x = [[1,2,3],
      [1,2,3]]

xx = tf.cast(x,tf.float32)

mean_all = tf.reduce_mean(xx, keepdims=True)
mean_0 = tf.reduce_mean(xx, axis=0, keepdims=True)
mean_1 = tf.reduce_mean(xx, axis=1, keepdims=True)


with tf.Session() as sess:
    print("mean_all:",sess.run(mean_all))
    print("mean_0:", sess.run(mean_0))
    print("mean_1:", sess.run(mean_1))

执行结果:

mean_all: [[2.]]
mean_0: [[1. 2. 3.]]
mean_1: [[2.] [2.]]

类似函数还有:

  • tf.reduce_sum :计算tensor指定轴方向上的所有元素的累加和;
  • tf.reduce_max : 计算tensor指定轴方向上的各个元素的最大值;
  • tf.reduce_all : 计算tensor指定轴方向上的各个元素的逻辑和(and运算);
  • tf.reduce_any: 计算tensor指定轴方向上的各个元素的逻辑或(or运算);

以上是关于tf.reduce_mean的主要内容,如果未能解决你的问题,请参考以下文章

tf.reduce_mean

tf.reduce_mean

tf.reduce_mean

tensorflow中 tf.reduce_mean函数

tf.reduce_mean

CNN之池化层tf.nn.max_pool|tf.nn.avg_pool|tf.reduce_mean