图像处理——基于机器视觉技术的人脸在线识别系统设计

Posted fpzs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像处理——基于机器视觉技术的人脸在线识别系统设计相关的知识,希望对你有一定的参考价值。

 

 

基于机器视觉技术的人脸在线识别系统设计

  本设计研究人脸检测与识别技术,在基于机器视觉技术上,构建了一套人脸在线检测识别系统,系统将由以下几个部分构成:计算机图像预处理、数据收集和预处理、

人脸图像定位检测、人脸识别模型训练、人脸识别。经过实验,确定该系统可对本人的人脸进行快速并准确的检测与识别。

关键词: 机器视觉; 图像处理; 人脸检测;人脸识别;OpenCV;人脸模型训练

一、设计目标 

  1. 掌握人脸识别步骤;
  2. 熟悉条人脸识别的相关算法;
  3. 熟悉机器视觉系统设计的一般流程;
  4. 掌握常用图像处理技术与OpenCV的使用方法;

 设计内容与要求

1.完成基于机器视觉技术的人脸在线识别系统算法设计;

2.完成基于机器视觉技术的人脸在线识别系统上位机设计;

3.人脸识别误差率≤2%;

二、人脸检测

2.1、主要步骤

  1. 加载 Opencv 自带的人脸检测 haarcascade_frontalface.xml 分类器。
  2. 图像预处理 cvtColor(灰度化)
  3. 使用 detectMultiScale 函数进行识别。
  4. 使用 rectangle 函数绘制找到的目标矩形框。
  5. 在原图像上 ROI 截取彩色的人脸保存。

2.2、detectMultiScale函数介绍

cvHaarDetectObjects是opencv1中的函数,opencv2中人脸检测使用的是 detectMultiScale函数。它可以检测出图片中所有的人脸,

并将人脸用vector保存各个人脸的坐标、大小(用矩形表示),函数由分类器对象调用: 

 
  1. void detectMultiScale(  
  2.     const Mat& image,  
  3.     CV_OUT vector<Rect>& objects,  
  4.     double scaleFactor = 1.1,  
  5.     int minNeighbors = 3,   
  6.     int flags = 0,  
  7.     Size minSize = Size(),  
  8.     Size maxSize = Size()  
  9. );  
 

参数1:image--待检测图片,一般为灰度图像加快检测速度;

参数2:objects--被检测物体的矩形框向量组;
参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%;
参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。
        如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。
        如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,
        这种设定值一般用在用户自定义对检测结果的组合程序上;
参数5:flags--要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为

        CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域,

        因此这些区域通常不会是人脸所在区域;
参数6、7:minSize和maxSize用来限制得到的目标区域的范围。

2.3、检测结果

技术图片

 

技术图片

技术图片

 

技术图片

 

 

 

以上是关于图像处理——基于机器视觉技术的人脸在线识别系统设计的主要内容,如果未能解决你的问题,请参考以下文章

智能追录器——基于人脸识别,图像处理,机器人视觉交叉领域

毕业设计 深度学习 机器视觉 人脸识别系统 - opencv python

python基于tensorflow的人脸识别系统设计与实现.zip(论文+源码)

毕业设计stm32机器视觉的人脸识别系统 - 单片机 物联网 嵌入式

python实现人脸识别系统设计_基于ROS的人脸识别系统设计与实现

浅谈人脸识别技术的方法和应用