P1742 最小圆覆盖(计算几何)
Posted bcoier
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P1742 最小圆覆盖(计算几何)相关的知识,希望对你有一定的参考价值。
体验过(O(n^3))过(10^5)吗?快来体验一波当(wys)的快感吧(QAQ)
前置芝士1:二元一次方程组求解
设
[egin{cases}a1 * x + b1*y=c1\a2 * x + b2*y=c2end{cases}]
(其中(a1,a2,b1,b2,c1,c2)为已知量)
由(②)式得:
[x=frac{c2-b2*y}{a2}]
带入(①)式并化简得:
[y=frac{c1-frac{a1*c2}{a2}}{b1-frac{a1*b2}{a2}}]
分子分母同时乘以(a2)得:
[y=frac{a2*c1-a1*c2}{a2*b1-a1*b2}]
同理可得(把(a,b)互换即可):
[x=frac{b2*c1-b1*c2}{b2*a1-b1*a2}]
前置芝士2:三点定圆
给出三个点,求出圆心&半径
[egin{cases}x1^2-2x1*x0+x0^2+y1^2-2y1*y0+y0^2=r^2\x2^2-2x2*x0+x0^2+y2^2-2y2*y0+y0^2=r^2\x3^2-2x3*x0+x0^2+y3^2-2y3*y0+y0^2=r^2end{cases}]
(②-①)和(③-①),并化简得:
[egin{cases}2*(x2-x1)x+2*(y2-y1)y=x2^2-x1^2+y2^2-y1^2\2*(x3-x1)x+2*(y3-y1)y=x3^2-x1^2+y3^2-y1^2end{cases}]
我们将三点定圆的柿子对应二元一次方程组中,可知:
[a1=x2-x1,quad a2=x3-x1]
[b1=y2-y1,quad b2=y3-y1]
[c1=frac{x2^2-x1^2+y2^2-y1^2}{2},quad c2=frac{x3^2-x1^2+y3^2-y1^2}{2}]
然后就可以根据三个点求出圆心和半径了
正文
跟据前置芝士,我们知道对于任意三个不共线的点,我们可以求出三点定的圆,所以一个明显的想法就是枚举三个点
我们先枚举第一个点,有两种情况
①:当前点在当前外面,即(dis()圆心,该点()>r)那么我们不管这个点
②:不是情况①的情况,那么我们就需要重新构造这个圆来包含所有的点了
怎么构造呢?我们重新枚举两外两个已经遍历过的点,组成三个点。同理,若重新构造的圆包括了三个点,那么就不管,若有任意一个在圆外,那么我们根据前置芝士重新确定圆心和半径即可
PS:本题出题人过于duliu,故意构造数据卡掉了上述解法,所以我们需要一个神奇的东西:随((da))机((luan))增((shu))量((ju))法,来防止掉精度
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define re register
#define D double
il int read()
{
re int x = 0, f = 1; re char c = getchar();
while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x * f;
}
#define rep(i, s, t) for(re int i = s; i <= t; ++ i)
#define eps 1e-12
#define maxn 100005
#define ff(x) (x) * (x)
int n, m;
D r;
struct node
{
D x, y;
}o, e[maxn];
il D dis(node a, node b){return sqrt(ff(a.x - b.x) + ff(a.y - b.y));}
il void get(node a, node b, node c)
{
D a1 = b.x - a.x, a2 = c.x - a.x, b1 = b.y - a.y, b2 = c.y - a.y;
D c1 = (ff(b.x) - ff(a.x) + ff(b.y) - ff(a.y));
D c2 = (ff(c.x) - ff(a.x) + ff(c.y) - ff(a.y));
o = (node){(b2 * c1 - b1 * c2) / (b2 * a1 * 2 - b1 * a2 * 2),
(a2 * c1 - a1 * c2) / (a2 * b1 * 2 - a1 * b2 * 2)};
r = dis(a, o);
}
il void work()
{
o = e[1], r = 0;
rep(i, 2, n)
{
if(dis(o, e[i]) > r + eps)
{
o = e[i], r = 0;
rep(j, 1, i - 1)
{
if(dis(o, e[j]) > r + eps)
{
o.x = (e[i].x + e[j].x) / 2, o.y = (e[i].y + e[j].y) / 2;
r = dis(o, e[j]);
rep(k, 1, j - 1) if(dis(o, e[k]) > r + eps) get(e[i], e[j], e[k]);
}
}
}
// printf("%.10lf
%.10lf %.10lf
", r, o.x, o.y);
}
}
int main()
n = read();
rep(i, 1, n) scanf("%lf%lf", &e[i].x, &e[i].y);
random_shuffle(e + 1, e + n + 1);
work();
printf("%.10lf
%.10lf %.10lf", r, o.x, o.y);
return 0;
}
以上是关于P1742 最小圆覆盖(计算几何)的主要内容,如果未能解决你的问题,请参考以下文章