几个积性函数的均值
Posted pengdaoyi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了几个积性函数的均值相关的知识,希望对你有一定的参考价值。
几个积性函数的均值
Euler 示性函数 $varphi(n)=nprod_{pmid n} left(1-frac1{p} ight)$ 对应的 Dirichlet 级数为 [ sum_{n=1}^{infty} frac{varphi(n)}{n^s} = frac{zeta(s-1)}{zeta(s)}, quad (Re s>2), ] 交错级数对应的 Dirichlet 级数是 [ sum_{n=1}^{infty} (-1)^{n-1} frac{varphi(n)}{n^s} = frac{2^s-3}{2^s-1} cdot frac{zeta(s-1)}{zeta(s)} quad (Re s>2). ] $varphi$ 的最佳均值估计属于 Walfisz (1963) cite[p. 144]{Wal1963} [ sum_{nleqslant x} varphi(n) = frac{3}{pi^2} x^2 + Oleft( x (log x)^{2/3} (log log x)^{4/3} ight). ] 易得 $varphi$ 的交错级数部分和 [ sum_{nleqslant x} (-1)^{n-1} varphi(n) = frac1{pi^2} x^2 + Oleft( x (log x)^{2/3} (log log x)^{4/3} ight). ] 1900 年 E. Landau cite{lan} 证明了 $varphi$ 的倒数均值为 [ sum_{n leqslant x} frac{1}{varphi(n)} = frac{zeta(2) zeta(3)}{zeta(6)} left( log x + gamma - sum_p frac{log p}{p^2 - p + 1} ight) + O left( frac{log x}{x} ight). ] 2013 年 Bordellès 和 Cloitre cite[Corollary 4, (i)]{BorClo2013}, 2017 年 László Tóth cite[Theorem 17]{László Tóth} 分别证明了 $varphi$ 的倒数交错级数部分和公式: [ sum_{n leqslant x} frac{(-1)^n}{varphi(n)} = frac{zeta(2) zeta(3)}{3 zeta(6)} left( log x + gamma - sum_{p} frac{log p}{p^2-p+1} - frac{8 log 2}{3} ight) + O left( frac{(log x)^{5/3}}{x} ight). ] Dedekind 函数 $psi(n)=n prod_{pmid n} left(1+frac1{p} ight)$ 对应的 Dirichlet 级数是 [ sum_{n=1}^{infty} frac{psi(n)}{n^s} = frac{zeta(s)zeta(s-1)}{zeta(2s)} quad (Re s>2), ] 交错级数对应的 Dirichlet 级数是 [ sum_{n=1}^{infty} (-1)^{n-1} frac{psi(n)}{n^s} = frac{2^s-5}{2^s+1} cdot frac{zeta(s)zeta(s-1)}{zeta(2s)} quad (Re s>2). ] $psi$ 均值的余项最好的估计也属于 Walfisz cite[p. 100]{Wal1963} [ sum_{nleqslant x} psi(n) = frac{15}{2pi^2} x^2 + Oleft( x (log x)^{2/3} ight). ] 同理可得 [ sum_{nleqslant x} (-1)^{n} psi(n) = frac{3}{2pi^2} x^2 + Oleft( x (log x)^{2/3} ight). ] 1979 年 Sita Ramaiah 和 Suryanarayana 研究了某些积性函数倒数的均值, 他们证明了 cite[Corollary 4.2]{SitSur1979} egin{align*} sum_{n leqslant x} frac1{psi(n)} & = prod_{pin mathbb{P}} left(1-frac1{p(p+1)} ight) left(log x+gamma + sum_{pin mathbb{P}} frac{log p}{p^2+p-1} ight) \ & quad + O left( x^{-1} (log x)^{2/3} (log log x)^{4/3} ight). end{align*} Bordellès 和 Cloitre cite[Corollary 4, (iii)]{BorClo2013}, László Tóth cite[Theorem 20]{László Tóth} 分别研究了交错级数的情形: egin{align*} sum_{n leqslant x} frac{(-1)^n}{psi(n)} & = - frac{1}{5} prod_p left( 1 - frac{1}{p(p+1)} ight) left( log x + gamma + sum_{p} frac{log p}{p^2+p-1} + frac{24 log 2}{5} ight) \ & quad + O left( frac{(log x)^2}{x} ight). end{align*} 除数和函数 $sigma(n)=sum_{dmid n} d$ 的 Dirichlet 级数为 [ sum_{n=1}^{infty} frac{sigma(n)}{n^s} = zeta(s)zeta(s-1) quad (Re s>2), ] 交错级数的 Dirichlet 级数是 [sum_{n=1}^{infty} (-1)^{n-1} frac{sigma(n)}{n^s} = left(1-frac{6}{2^s}+frac{4}{2^{2s}} ight) zeta(s)zeta(s-1) quad (Re s>2). ] $sigma$ 均值的余项最佳估计仍属于 Walfisz cite[p. 99]{Wal1963} [ sum_{nleqslant x} sigma(n) = frac{pi^2}{12} x^2 + Oleft( x (log x)^{2/3} ight). ] 作为推论, 有 [ sum_{nleqslant x} (-1)^{n} sigma(n) = frac{pi^2}{48} x^2 + Oleft( x (log x)^{2/3} ight). ] Sita Ramaiah 和 Suryanarayana 在文章 cite[Corollary 4.1]{SitSur1979} 中给出了 [ sum_{nleqslant x} frac1{sigma(n)} = E left(log x + gamma + F ight) + Oleft( x^{-1} (log x)^{2/3}(log log x)^{4/3} ight), ] 其中 egin{align*} E =prod_{pin mathbb{P}} alpha(p), & qquad F= sum_{pin mathbb{P}} frac{(p-1)^2 eta(p)log p}{palpha(p)}, \ alpha(p) = left(1-frac1{p} ight) sum_{ u=0}^{infty} frac1{sigma(p^ u)} & = 1- frac{(p-1)^2}{p} sum_{j=1}^{infty} frac1{(p^j-1)(p^{j+1}-1)}, \ eta(p) & = sum_{j=1}^{infty} frac{j}{(p^j-1)(p^{j+1}-1)}. end{align*} Bordellès and Cloitre cite[Corollary 4, (v)]{BorClo2013}, László Tóth cite[Theorem 23]{László Tóth} 分别证明了 egin{align*} sum_{nleqslant x} (-1)^{n-1} frac1{sigma(n)} & = Eleft( left(frac2{K} -1 ight) left(log x+ gamma + F ight) +2(log 2) frac{K‘}{K^2} ight) \ &quad + Oleft( x^{-1} (log x)^{5/3}(log log x)^{4/3} ight), end{align*} 其中 [ K= sum_{j=0}^{infty} frac1{2^{j+1}-1}, qquad K‘= sum_{j=1}^{infty} frac{j}{2^{j+1}-1}. ]
参考文献
-
A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, 1963.
-
E. Landau, Über die Zahlentheoretische Function φ(n) und ihre Beziehung zum Goldbachschen Satz, Nachrichten der Koniglichten Gesellschaft der Wissenschaften zu Göttingen, Mathematisch Physikalische Klasse, 1900, 177–186.
-
O. Bordellès and B. Cloitre, An alternating sum involving the reciprocal of certain multiplicative functions, J. Integer Seq. 16 (2013), Article 13.6.3.
-
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, J. Integer Seq. 20 (2017), Article 17.2.1.
-
V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Math. J. Okayama Univ. 21 (1979), 155–164.
以上是关于几个积性函数的均值的主要内容,如果未能解决你的问题,请参考以下文章