题解+新技巧--一本通1282:最大子矩阵

Posted inductivesorting-qyf

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解+新技巧--一本通1282:最大子矩阵相关的知识,希望对你有一定的参考价值。

http://ybt.ssoier.cn:8088/problem_show.php?pid=1282(题目传送)

虽然已知是DP,但第一眼看挺蒙的,想了想后设了个a[i][j][k][l]表示长(坐标)为i~j,宽(坐标)为k~l的矩阵,但根本找不到状态转移方程啊。后借鉴题解(https://www.cnblogs.com/GodA/p/5237061.html)后领悟到的另一种方法:

任何问题都有它的简化,看到二维,没办法时我们可以考虑一下一维:求一维数组的一个最大连续段,我们可以设b[i]为从前i个数的最大连续段(a[i]为一开始存入的输入数据),b[i]无非就有两种情况:以它结尾的最大连续段;或以它开头另开一个最大连续段(当b[i-1]小于0时b[i-1]+a[i]反而比a[i]小,因此不如新开一个最大连续段)。

 1 int MaxSubArray(int a[],int n)
 2 {
 3     int i,b = 0,sum = 0;
 4     for(i = 0;i < n;i++)
 5     {
 6         if(b>0)                // 若a[i]+b[i-1]会减小
 7             b += a[i];        // 则以a[i]为首另起一个子段
 8         else    
 9             b = a[i];
10         if(b > sum)    
11             sum = b;
12     }
13     return sum;
14 }

想完一维,跟二维有什么关系?当然有了,我们把二维“拍”成一维,不就行了吗?

我们假设所求N*N的矩阵的最大子矩阵是从i列到j列,q行到p行,如下图所示(假设下标从1开始)

  a[1][1]  a[1][2]  ······  a[1][i]  ······  a[1][j]   ······  a[1][n]

  a[2][1]  a[2][2]  ······  a[2][i]  ······  a[2][j]   ······  a[2][n]

                  ······

  a[q][1]  a[q][2]  ······  a[q][i]  ······  a[q][j]  ······  a[q][n]

                  ······

  a[p][1]  a[p][2]  ······  a[p][i]  ······  a[p][j]  ······  a[p][n]

                  ······

  a[n][1]  a[n][2]  ······  a[n][i]  ······  a[n][j]  ······  a[n][n]

  最大子矩阵就是图示红色部分,如果把最大子矩阵同列的加起来,我们可以得到一个一维数组{a[q][i]+······+a[p][i] , ······ ,a[q][j]+······+a[p][j]} ,现在我们可以看出,这其实就是一个一维数组的最大子段问题:

分别将各个高的矩阵压缩成一个一维数组并求它的最大连续段,则在二维的体现就是一个相应高的最大连续矩阵,取所有相应最大连续矩阵的最大值,就是答案(还好题目只要求最大值,不要求给出最大矩阵是什么)

AC代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 int dp[101][101],arr[101];
 6 int maxsub(int a[],int n)
 7 {
 8     int max=0,b=0;
 9     for(int i=0;i<=n;i++)
10     {
11         if(b>0)
12             b+=a[i];
13         else
14             b=a[i];
15         if(b>max) max=b;
16     }
17     return max;
18 }
19 int main()
20 {
21     int n,maxx=0;
22     cin>>n;
23     for(int i=1;i<=n;i++)
24         for(int j=1;j<=n;j++)
25             cin>>dp[i][j];
26     for(int i=1;i<=n;i++)
27     {
28         memset(arr,0,sizeof(arr));
29         for(int j=i;j<=n;j++)
30         {
31             for(int k=1;k<=n;k++)
32             arr[k]+=dp[j][k];
33             int m=maxsub(arr,n);
34             if(maxx<m)
35             maxx=m;
36         }
37     }
38     cout<<maxx;
39     return 0;
40 }

最后总结一下:1.对问题的简化(二维转一维,模拟转整体充分条件(长方体),无序转有序等)十分重要!

2.线型动态规划多以结尾为状态。

以上是关于题解+新技巧--一本通1282:最大子矩阵的主要内容,如果未能解决你的问题,请参考以下文章

一本通例题埃及分数—题解&&深搜的剪枝技巧总结

最大子矩阵

算法?日更?第十七期信息奥赛一本通1598: 例 2最大连续和题解

#10172. 「一本通 5.4 练习 1」涂抹果酱 题解

NOI题库 1768最大子矩阵 题解

最大子矩阵和 题解