Pandas库中的DataFrame
Posted niuxingyu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas库中的DataFrame相关的知识,希望对你有一定的参考价值。
1 简介
DataFrame是Python中Pandas库中的一种数据结构,它类似excel,是一种二维表。
或许说它可能有点像matlab的矩阵,但是matlab的矩阵只能放数值型值(当然matlab也可以用cell存放多类型数据),DataFrame的单元格可以存放数值、字符串等,这和excel表很像。
同时DataFrame可以设置列名columns与行名index,可以通过像matlab一样通过位置获取数据也可以通过列名和行名定位,具体方法在后面细说。
2 创建DataFrame
首先声明一下,以下都是使用的Python 3.6.5版本为例,Python2应该也差不多吧(大概
在所有操作之前当然要先import必要的pandas库,因为pandas常与numpy一起配合使用,所以也一起import吧。
import pandas as pd import numpy as np
如果还没安装直接在cmd里pip安装吧,如果有版本选择问题,参看之前的帖子。
pip install pandas pip install numpy
2.1 直接创建
可以直接使用pandas的DataFrame函数创建,比如接下来我们随机创建一个4*4的DataFrame。
df1=pd.DataFrame(np.random.randn(4,4),index=list(‘ABCD‘),columns=list(‘ABCD‘))
其中第一个参数是存放在DataFrame里的数据,第二个参数index就是之前说的行名(或者应该叫索引?),第三个参数columns是之前说的列名。
后两个参数可以使用list输入,但是注意,这个list的长度要和DataFrame的大小匹配,不然会报错。当然,这两个参数是可选的,你可以选择不设置。
而且发现,这两个list是可以一样的,但是每行每列的名字在index或columns里要是唯一的。
当然,如果你的数据量贼小,也可以自己输入创建,类似这样。
df2=pd.DataFrame([[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]],index=list(‘ABCD‘),columns=list(‘ABCD‘))
2.2 使用字典创建
仍然是使用DataFrame这个函数,但是字典的每个key的value代表一列,而key是这一列的列名。比如这样。
dic1={‘name‘:[‘小明‘,‘小红‘,‘狗蛋‘,‘铁柱‘],‘age‘:[17,20,5,40],‘gender‘:[‘男‘,‘女‘,‘女‘,‘男‘]} df3=pd.DataFrame(dic1)
3 查看与筛选数据
python没有matlab的工作区直接查看变量与内容,这大概是python科学计算的一个缺点。所以需要格外的代码来查看,最基本的直接写变量名与print就不说了。
3.1 查看列的数据类型
使用dtypes方法可以查看各列的数据类型,比如说刚刚的df3。
df3.dtypes
3.2 查看DataFrame的头尾
使用head可以查看前几行的数据,默认的是前5行,不过也可以自己设置。
使用tail可以查看后几行的数据,默认也是5行,参数可以自己设置。
比如随意设置一个6*6的数据,只看前5行。
df4=pd.DataFrame(np.random.randn(6,6)) df4.head()
比如只看前3行。
df4.head(3)
比如看后5行。
df4.tail(5)
比如只看后2行。
df4.tail(2)
3.3 查看行名与列名
使用index查看行名,columns查看列名。具体由例子感受吧。
查看行名。
df1.index
查看列名。
df3.columns
以上是关于Pandas库中的DataFrame的主要内容,如果未能解决你的问题,请参考以下文章