sklearn 特征降维利器 —— PCA TSNE
Posted siwnhwxh
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了sklearn 特征降维利器 —— PCA TSNE相关的知识,希望对你有一定的参考价值。
同为降维工具,二者的主要区别在于,
- 所在的包不同(也即机制和原理不同)
- from sklearn.decomposition import PCA
- from sklearn.manifold import TSNE
- 因为原理不同,导致,tsne 保留下的属性信息,更具代表性,也即最能体现样本间的差异;
- TSNE 运行极慢,PCA 则相对较快;
因此更为一般的处理,尤其在展示(可视化)高维数据时,常常先用 PCA 进行降维,再使用 tsne:
data_pca = PCA(n_components=50).fit_transform(data)
data_pca_tsne = TSNE(n_components=2).fit_transform(data_pca)
- 1
- 2
t-SNE(t-distribution Stochastic Neighbor Embedding)是目前最为流行的高维数据的降维算法。
t-SNE 成立的前提基于这样的一个假设:我们现实世界观察到的数据集,都在本质上有一种低维的特性(low intrinsic dimensionality),尽管它们嵌入在高维空间中,甚至可以说,高维数据经过降维后,在低维状态下,更能显现其本质特性,这其实也是流形学习(Manifold Learning)的基本思想。
原始论文请见,论文链接(pdf)。
1. sklearn 仿真
-
import 必要的库;
import numpy as np from numpy import linalg from numpy.linalg import norm from scipy.spatial.distance import squareform, pdist # We import sklearn. import sklearn from sklearn.manifold import TSNE from sklearn.datasets import load_digits from sklearn.preprocessing import scale # We‘ll hack a bit with the t-SNE code in sklearn 0.15.2. from sklearn.metrics.pairwise import pairwise_distances from sklearn.manifold.t_sne import (_joint_probabilities, _kl_divergence) from sklearn.utils.extmath import _ravel # Random state. RS = 20150101 # We‘ll use matplotlib for graphics. import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects import matplotlib %matplotlib inline # We import seaborn to make nice plots. import seaborn as sns sns.set_style(‘darkgrid‘) sns.set_palette(‘muted‘) sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5}) # We‘ll generate an animation with matplotlib and moviepy. from moviepy.video.io.bindings import mplfig_to_npimage import moviepy.editor as mpy
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
-
加载数据集
digits = load_digits() # digits.data.shape ⇒ (1797L, 64L)
- 1
- 2
-
调用 sklearn 工具箱中的 t-SNE 类
X = np.vstack([digits.data[digits.target==i] for i in range(10)]) y = np.hstack([digits.target[digits.target==i] for i in range(10)]) digits_proj = TSNE(random_state=RS).fit_transform(X) # digits_proj:(1797L, 2L),ndarray 类型
- 1
- 2
- 3
- 4
- 5
- 6
-
可视化
def scatter(x, colors): # We choose a color palette with seaborn. palette = np.array(sns.color_palette("hls", 10)) # We create a scatter plot. f = plt.figure(figsize=(8, 8)) ax = plt.subplot(aspect=‘equal‘) sc = ax.scatter(x[:,0], x[:,1], lw=0, s=40, c=palette[colors.astype(np.int)]) plt.xlim(-25, 25) plt.ylim(-25, 25) ax.axis(‘off‘) ax.axis(‘tight‘) # We add the labels for each digit. txts = [] for i in range(10): # Position of each label. xtext, ytext = np.median(x[colors == i, :], axis=0) txt = ax.text(xtext, ytext, str(i), fontsize=24) txt.set_path_effects([ PathEffects.Stroke(linewidth=5, foreground="w"), PathEffects.Normal()]) txts.append(txt) return f, ax, sc, txts scatter(digits_proj, y) plt.savefig(‘images/digits_tsne-generated.png‘, dpi=120)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!http://www.captainbed.net
!-->以上是关于sklearn 特征降维利器 —— PCA TSNE的主要内容,如果未能解决你的问题,请参考以下文章
详解主成分分析PCA与奇异值分解SVD-降维后的矩阵components_ & inverse_transform菜菜的sklearn课堂笔记
主成分分析法(PCA)(含SVD奇异值分解)等降维(dimensionality reduction)算法-sklearn