CodeChefQuerying on a Grid(分治,最短路)

Posted cjyyb

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CodeChefQuerying on a Grid(分治,最短路)相关的知识,希望对你有一定的参考价值。

【CodeChef】Querying on a Grid(分治,最短路)

题面

Vjudge
CodeChef

题解

考虑分治处理这个问题,每次取一个(mid),对于(mid)上的三个点构建最短路径树(因为保证了最短路唯一所以是树)。
如果两点之间的最短路径跨越了(mid),那么必定有(dis[u]+dis[v])的和就是最短路径长度。
那么我们在分治过程中考虑每一个(mid),取其中(dis[u]+dis[v])的最小值,这样子就很容易可以找到最短路径长度。
然后知道了最短路径长度怎么找到最短路径呢?
我们已经把最短路径树给构出来了,那么只需要在必定跨越的(mid)的最短路径树上做修改就好了。
如果直接链加再单点询问,这样子是两个(log)的,改成单点修改,子树求和就可以做到一个(log)了。
这样子分治+对于每个最短路径树计算答案,复杂度是(O(nlog^2n)),似乎还有一个(3)的常数。
c++11真好用,写着写着就跟zsy代码一样了(大雾

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 300300
#define pi pair<ll,int>
#define fr first
#define sd second
#define mp make_pair
#define pb push_back
inline ll read()
{
    ll x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
vector<pi> E[MAX];
int n,m,Q;
int id[MAX][3],tot;
int lb(int x){return x&(-x);}
struct SPT
{
    ll dis[MAX],c[MAX];int fa[MAX],dfn[MAX],low[MAX],tim;
    bool vis[MAX];
    vector<int> son[MAX];
    priority_queue<pi,vector<pi>,greater<pi> >Q;
    void dfs(int u){dfn[u]=++tim;for(int v:son[u])dfs(v);low[u]=tim;}
    void Modify(int x,ll w){x=dfn[x];while(x<=tim)c[x]+=w,x+=lb(x);}
    ll Query(int x)
    {
        ll ret=0;int X;
        X=low[x];while(X)ret+=c[X],X-=lb(X);
        X=dfn[x]-1;while(X)ret-=c[X],X-=lb(X);
        return ret;
    }
    void Dijkstra(int l,int r,int S)
    {
        for(int i=l;i<=r;++i)dis[i]=1e18,vis[i]=false;
        dis[S]=0;Q.push(mp(dis[S],S));
        while(!Q.empty())
        {
            int u=Q.top().sd;Q.pop();
            if(vis[u])continue;vis[u]=true;
            for(pi x:E[u])
            {
                int v=x.sd;ll w=x.fr;
                if(v<l||v>r||dis[v]<=dis[u]+w)continue;
                dis[v]=dis[u]+w;fa[v]=u;Q.push(mp(dis[v],v));
            }
        }
        for(int i=l;i<=r;++i)if(i!=S)son[fa[i]].pb(i);
        dfs(S);
    }
}T[18][3];
void Build(int l,int r,int dep)
{
    int mid=(l+r)>>1;
    for(int i=0;i<n;++i)
        T[dep][i].Dijkstra(id[l][0],id[r][n-1],id[mid][i]);
    if(l<mid)Build(l,mid-1,dep+1);
    if(r>mid)Build(mid+1,r,dep+1);
}
ll mx;
void Calc(int l,int r,int dep,int x,int y)
{
    int mid=(l+r)>>1;
    for(int i=0;i<n;++i)
        mx=min(mx,T[dep][i].dis[x]+T[dep][i].dis[y]);
    if(x<=id[mid][n-1]&&y>=id[mid][0])return;
    if(y<id[mid][0])Calc(l,mid-1,dep+1,x,y);
    else Calc(mid+1,r,dep+1,x,y);
}
void Modify(int l,int r,int dep,int x,int y,ll w)
{
    int mid=(l+r)>>1;
    for(int i=0;i<n;++i)
        if(T[dep][i].dis[x]+T[dep][i].dis[y]==mx)
        {
            T[dep][i].Modify(x,w),T[dep][i].Modify(y,w);
            return;
        }
    if(y<id[mid][0])Modify(l,mid-1,dep+1,x,y,w);
    else Modify(mid+1,r,dep+1,x,y,w);
}
ll Query(int l,int r,int dep,int u)
{
    int mid=(l+r)>>1;ll ret=0;
    for(int i=0;i<n;++i)
    {
        ll s=T[dep][i].Query(u);
        if(id[mid][i]==u)s>>=1;
        ret+=s;
    }
    if(u<id[mid][0])ret+=Query(l,mid-1,dep+1,u);
    if(u>id[mid][n-1])ret+=Query(mid+1,r,dep+1,u);
    return ret;
}
int main()
{
    n=read();m=read();Q=read();
    for(int i=0;i<m;++i)
        for(int j=0;j<n;++j)id[i][j]=++tot;
    for(int i=0;i<n-1;++i)
        for(int j=0;j<m;++j)
        {
            int u=id[j][i],v=id[j][i+1];ll w=read();
            E[u].pb(mp(w,v));E[v].pb(mp(w,u));
        }
    for(int i=0;i<n;++i)
        for(int j=0;j<m-1;++j)
        {
            int u=id[j][i],v=id[j+1][i];ll w=read();
            E[u].pb(mp(w,v));E[v].pb(mp(w,u));
        }
    Build(0,m-1,0);
    while(Q--)
    {
        int opt=read();
        if(opt==1)
        {
            int x1=read()-1,y1=read()-1,x2=read()-1,y2=read()-1;ll w=read();
            int u=id[y1][x1],v=id[y2][x2];if(u>v)swap(u,v);
            mx=1e18;Calc(0,m-1,0,u,v);
            Modify(0,m-1,0,u,v,w);
        }
        else
        {
            int x=read()-1,y=read()-1,u=id[y][x];
            printf("%lld
",Query(0,m-1,0,u));
        }
    }
    return 0;
}

以上是关于CodeChefQuerying on a Grid(分治,最短路)的主要内容,如果未能解决你的问题,请参考以下文章

leetcode:Minimum Path Sum

Kendo UI Grid 使用总结

[LeetCode&Python] Problem 883. Projection Area of 3D Shapes

(css)中a.on:hover是啥意思

How to click on a point on an HTML5 canvas in Python selenium webdriver

put a record on 歌词