PAT A1126 Eulerian Path (25 分)

Posted tccbj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT A1126 Eulerian Path (25 分)相关的知识,希望对你有一定的参考价值。

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian
 
技术图片
 1 #include <stdio.h>
 2 #include <algorithm>
 3 using namespace std;
 4 const int maxn=510;
 5 int g[maxn][maxn];
 6 int deg[maxn];
 7 int n,m;
 8 int num=0;
 9 bool vis[maxn]={false};
10 void dfs(int st){
11     if(vis[st]==false){
12         vis[st]=true;
13         num++;
14         for(int i=1;i<=n;i++){
15             if(vis[i]==false && g[st][i]==1){
16                 dfs(i);
17             }
18         }
19     }
20 }
21 int main(){
22     scanf("%d %d",&n,&m);
23     for(int i=0;i<m;i++){
24         int c1,c2;
25         scanf("%d %d",&c1,&c2);
26         g[c1][c2]=g[c2][c1]=1;
27         deg[c1]++;
28         deg[c2]++;
29     }
30     dfs(1);
31     int cnt=0;
32     for(int i=1;i<=n;i++){
33         printf("%d",deg[i]);
34         printf("%s",i==n?"
":" ");
35         if(deg[i]%2==1)cnt++;
36     }
37     //printf("%d %d
",num,cnt);
38     if(num==n && cnt==0){
39         printf("Eulerian
");
40     }
41     else if(num==n && cnt==2){
42         printf("Semi-Eulerian
");
43     }
44     else{
45         printf("Non-Eulerian
");
46     }
47 }
View Code

注意点:直接根据题目字面意思实现就好了。首先看是不是连通图,再看入度为奇数的有几个,没有就是Eulerian,有2个就是semi,其余为non

以上是关于PAT A1126 Eulerian Path (25 分)的主要内容,如果未能解决你的问题,请参考以下文章

PAT 1126 Eulerian Path

PAT 1126 Eulerian Path

PAT 甲级 1126 Eulerian Path

PAT_A1126#Eulerian Path

PAT Advanced 1126 Eulerian Path (25) [连通图,欧拉路径,欧拉回路,欧拉图]

1126 Eulerian Path