P3317 [SDOI2014]重建

Posted olinr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P3317 [SDOI2014]重建相关的知识,希望对你有一定的参考价值。

(color{#0066ff}{ 题目描述 })

T国有N个城市,用若干双向道路连接。一对城市之间至多存在一条道路。

在一次洪水之后,一些道路受损无法通行。虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回。

幸运的是,此前T国政府调查过每条道路的强度,现在他们希望只利用这些信息估计灾情。具体地,给定每条道路在洪水后仍能通行的概率,请计算仍能通行的道路恰有N-1条,且能联通所有城市的概率。

(color{#0066ff}{输入格式})

输入的第一行包含整数N。

接下来N行,每行N个实数,第i+l行,列的数G[i][j]表示城市i与j之间仍有道路联通的概率。

输入保证G[i][j]=G[j][i],且G[i][i]=0;G[i][j]至多包含两位小数。

(color{#0066ff}{输出格式})

输出一个任意位数的实数表示答案。

你的答案与标准答案相对误差不超过10^(-4)即视为正确。

(color{#0066ff}{输入样例})

3
0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

(color{#0066ff}{输出样例})

0.375

(color{#0066ff}{数据范围与提示})

1 < N < =50

数据保证答案非零时,答案不小于10^-4

(color{#0066ff}{题解})

根据题目,我们要求的就是

[ ans=sum_{E}prod_{kin E}P_kprod_{k otin E} (1-P_k) ]

如果没有后面那个东西,显然就是裸的矩阵树定理,但是后面的东西很不好处理,尤其是因为(k otin E)

那么,考虑容斥一下, 把( otin换成in)

[ ans=sum_{E}prod_{kin E}P_kfrac{prod_{k}(1-P_k)}{prod_{kin E} (1-P_k)} ]

然后把上面提出来,就成这样了

[ ans=prod_{k}(1-P_k)sum_{E}prod_{kin E}frac{P_k}{(1-P_k)} ]

这。。。。这是新的边权!!可以矩阵树直接做!

然后把前面的累乘处理一下即可

矩阵树第一题

有两点需要注意

答案是矩阵的余子式的值,也就是矩阵去掉任一行任一列的行列式的值

度数矩阵的变化

#include<bits/stdc++.h>
#define LL long long
LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int maxn = 55;
const double eps = 1e-8;
double ans = 1, mp[maxn][maxn];
int n;
void gauss() {
    for(int i = 1; i < n; i++) {
        for(int j = i + 1; j < n; j++) {
            double now = mp[j][i] / mp[i][i];
            for(int k = i; k < n; k++) mp[j][k] -= mp[i][k] * now;
        }
        ans *= mp[i][i];
    }
    ans = fabs(ans);
}
int main() {
    n = in();
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++) 
            scanf("%lf", &mp[i][j]);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++) {
            if(fabs(mp[i][j]) <= eps) mp[i][j] = eps;
            if(fabs(1 - mp[i][j]) <= eps) mp[i][j] = 1 - eps;
            if(i < j) ans *= (1.0 - mp[i][j]);
            mp[i][j] = mp[i][j] / (1.0 - mp[i][j]);
        }
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i ^ j) mp[i][i] += mp[i][j], mp[i][j] = -mp[i][j];
    gauss();
    printf("%.5f", ans);
    return 0;
}

以上是关于P3317 [SDOI2014]重建的主要内容,如果未能解决你的问题,请参考以下文章

P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元

[SDOI2014]重建

bzoj3534: [Sdoi2014]重建

luogu3317 [SDOI2014]重建

[SDOI2014]重建

[SDOI2014] 重建