MapReduce实例
Posted skyice
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce实例相关的知识,希望对你有一定的参考价值。
一、MapReduce 原理
MapReduce 是一种变成模式,用于大规模的数据集的分布式运算。通俗的将就是会将任务分给不同的机器做完,然后在收集汇总。
MapReduce有两个核心:Map,Reduce,它们分别单独计算任务,每个机器尽量计算自己hdfs内部的保存信息,Reduce则将计算结果汇总。
一、WordCount单词统计
1.1 数据准备test.txt
hello hadoop
wille learn hadoop WordCount
but the hadoop is not easy
1.2 Map程序:
package com.ice.hadoop.test.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
context.write(new Text(word), new IntWritable(1));
}
}
}
这里定义了一个mapper类,其中有一个map方法。MapReduce框架每读到一行数据,就会调用一次这个map方法。
Mapper<LongWritable, Text, Text, IntWritable>其中的4个类型分别是:输入key类型、输入value类型、输出key类型、输出value类型。
MapReduce框架读到一行数据侯以key value形式传进来,key默认情况下是mr矿机所读到一行文本的起始偏移量(Long类型),value默认情况下是mr框架所读到的一行的数据内容(String类型)。
输出也是key value形式的,是用户自定义逻辑处理完成后定义的key,用户自己决定用什么作为key,value是用户自定义逻辑处理完成后的value,内容和类型也是用户自己决定。
此例中,输出key就是word(字符串类型),输出value就是单词数量(整型)。
这里的数据类型和我们常用的不一样,因为MapReduce程序的输出数据需要在不同机器间传输,所以必须是可序列化的,例如Long类型,Hadoop中定义了自己的可序列化类型LongWritable,String对应的是Text,int对应的是IntWritable。
1.3 Reduce程序:
package com.ice.hadoop.test.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
Integer count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
这里定义了一个Reducer类和一个reduce方法。当传给reduce方法时,就变为:Reducer<Text, IntWritable, Text, IntWritable> 4个类型分别指:输入key的类型、输入value的类型、输出key的类型、输出value的类型。
需要注意,reduce方法接收的是:一个字符串类型的key、一个可迭代的数据集。因为reduce任务读取到map任务处理结果是这样的:
(good,1)(good,1)(good,1)(good,1)
当传给reduce方法时,就变为:
key:good
value:(1,1,1,1)
所以,reduce方法接收到的是同一个key的一组value。
1.4 Main程序
package com.ice.hadoop.test.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountMapReduce {
public static void main(String[] args) throws Exception {
//创建配置对象
Configuration conf = new Configuration();
//创建Job对象
Job job = Job.getInstance(conf, "wordCount");
//设置mapper类
job.setMapperClass(WordcountMapper.class);
//设置 Reduce类
job.setReducerClass(WordCountReducer.class);
//设置运行job类
job.setJarByClass(WordCountMapReduce.class);
//设置map输出的key,value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//设置reduce输出的key,value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//设置输入路径金额输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//提交job
boolean b = job.waitForCompletion(true);
if (!b){
System.out.println("word count failed!");
}
}
}
编译打包后:
hdfs dfs -mkdir -p /wordcount/input
hdfs dfs -put test.txt /wordcount/input
执行wordcount jar
hadoop jar mapreduce-wordcount-0.0.1-SNAPSHOT.jar com/ice/hadoop/test/wordcount/WordCountMapReduce /wordcount/input /wordcount/output
执行完成后验证
hdfs dfs -cat /wordcount/output/*
二、hadoop 序列化
hadoop 为什么不使用java序列化
Hadoop的序列化机制与java的序列化机制不同,它将对象序列化到流中,值得一提的是java的序列化机制是不断的创建对象,但在Hadoop的序列化机制中,用户可以复用对象,这样就减少了java对象的分配和回收,提高了应用效率。
Hadoop定义了新的序列化接口——writable:
package org.apache.hadoop.io
import java.io.DataOutput
import java.io.DataInput
import java.io.IOException
public interface Writable{
void write(DataOutput out) throws IOException;
void readFields(DataInput in) throws IOException;
}
通过实现 Writable 接口,完成序列化与反序列化。
但更多的时候,Hadoop要求同时实现序列化与可对比性,因此更常见的情况下需要实现的是 WritableComparable 接口。同时给出默认的构造函数供 MapReduce 进行实例化。下面给出一个自定义Hadoop可序列化类的示例:
import java.io.*;
import org.apache.hadoop.io.*;
public class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second;
public TextPair() {
set(new Text(), new Text());
}
public TextPair(String first, String second) {
set(new Text(first), new Text(second));
}
public TextPair(Text first, Text second) {
set(first, second);
}
public void set(Text first, Text second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
@Override
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
@Override
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}
@Override
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
}
@Override
public String toString() {
return first + " " + second;
}
@Override
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}
2.1 需求与实现思路
需要统计手机用户流量日志,日志内容实例
手机号 | 上行流量 | 下行流量 |
---|---|---|
1252548225 | 200 | 1100 |
1345858685 | 300 | 1200 |
1862538225 | 400 | 1300 |
1545858645 | 100 | 300 |
1502236225 | 500 | 1300 |
1362858685 | 300 | 1100 |
要把同一个用户的上行流量、下行流量进行累加,并计算出综合。
例如上面的13897230503有两条记录,就要对这两条记录进行累加,计算总和,得到:
13897230503,500,1600,2100
2.2 实现思路
- map
接收日志的一行数据,key为行的偏移量,value为此行数据。
输出时,应以手机号为key,value应为一个整体,包括:上行流量、下行流量、总流量。
手机号是字符串类型Text,而这个整体不能用基本数据类型表示,需要我们自定义一个bean对象,并且要实现可序列化。
key: 13897230503
value: < upFlow:100, dFlow:300, sumFlow:400 > - reduce
接收一个手机号标识的key,及这个手机号对应的bean对象集合
例如:
key:
13897230503
value:
< upFlow:400, dFlow:1300, sumFlow:1700 >,
< upFlow:100, dFlow:300, sumFlow:400 >
迭代bean对象集合,累加各项,形成一个新的bean对象,例如:
< upFlow:400+100, dFlow:1300+300, sumFlow:1700+400 >
最后输出:
key: 13897230503
value: < upFlow:500, dFlow:1600, sumFlow:2100 >
2.3 map程序
创建实体并实现Writable
package com.ice.hadoop.test.flowbean;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
/**
* @author:ice
* @Date: 2019/2/22 0022
*/
public class FlowBean implements Writable {
private long upFlow;
private long dFlow;
private long sumFlow;
public FlowBean() {
}
public FlowBean(long upFlow, long dFlow) {
this.upFlow = upFlow;
this.dFlow = dFlow;
this.sumFlow = upFlow + dFlow;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);//wirte写入的顺序与read读取顺序
out.writeLong(dFlow);
out.writeLong(sumFlow);
}
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
dFlow = in.readLong();
sumFlow = in.readLong();
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getdFlow() {
return dFlow;
}
public void setdFlow(long dFlow) {
this.dFlow = dFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
@Override
public String toString() {
return "FlowBean{" +
"upFlow=" + upFlow +
", dFlow=" + dFlow +
", sumFlow=" + sumFlow +
'}';
}
}
MapReduce程序:
package com.ice.hadoop.test.flowbean;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
* @author:ice
* @Date: 2019/2/22 0022
*/
public class FlowCount {
static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split(" ");
String phone = fields[0];
Long upFlow = Long.parseLong(fields[1]);
Long dFlow = Long.parseLong(fields[2]);
context.write(new Text(phone), new FlowBean(upFlow, dFlow));
}
}
static class FlowCountReduce extends Reducer<Text, FlowBean, Text, FlowBean> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context)
throws IOException, InterruptedException {
long sumUpFlow = 0L;
long sumDFlow = 0L;
for (FlowBean bean : values) {
sumUpFlow += bean.getUpFlow();
sumDFlow += bean.getdFlow();
}
FlowBean sumBean = new FlowBean(sumUpFlow, sumDFlow);
context.write(key, sumBean);
}
}
public static void main(String[] args) throws Exception {
//创建配置对象
Configuration conf = new Configuration();
//创建Job对象
Job job = Job.getInstance(conf, "FlowCount");
//设置mapper类
job.setMapperClass(FlowCountMapper.class);
//设置 Reduce类
job.setReducerClass(FlowCountReduce.class);
//设置运行job类
job.setJarByClass(FlowCount.class);
//设置map输出的key,value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//设置reduce输出的key,value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//设置输入路径金额输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//提交job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
编译打包步骤是一样的。
三、合并小文件
为什么要合并小文件,因为mapReduce会将每一个小文件都当做一个任务,当特别多的小文件时,导致创建非常多的任务从而效率损耗
如何实现:文件的读取有map负责,为了将小文件合并,需要使用Inputformat,RecordReader,RecordReader负责实现一次读取一个完整文件封装为key value,map接收到文件内容,然后以文件名为key,以文件内容为value,向外输出的格式要注意,要使用SequenceFileOutPutFormat(用来输出对象)。
因为reduce收到的key value都是对象,不是普通的文本,reduce默认的输出格式是TextOutputFormat,使用它的话,最终输出的内容就是对象ID,所以要使用SequenceFileOutPutFormat进行输出
3.1 代码实践
package com.ice.hadoop.test.mergefile;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.ByteWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class MyInputFormat extends FileInputFormat<NullWritable, ByteWritable> {
@Override
public org.apache.hadoop.mapreduce.RecordReader<NullWritable, ByteWritable> createRecordReader(
org.apache.hadoop.mapreduce.InputSplit inputSplit, TaskAttemptContext taskAttemptContext)
throws IOException, InterruptedException {
MyRecordReader reader = new MyRecordReader();
reader.initialize(inputSplit, taskAttemptContext);
return null;
}
@Override
protected boolean isSplitable(JobContext context, Path filename) {
//设置每个小文件不可分割,保证一个小文件生成一个key-value键值对
return false;
}
}
createRecordReader方法中创建一个自定义的reader
package com.ice.hadoop.test.mergefile;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class MyRecordReader extends RecordReader<NullWritable, BytesWritable> {
private FileSplit fileSplit;
private Configuration conf;
private BytesWritable value = new BytesWritable();
private boolean processed = false;
@Override
public void initialize(InputSplit inputSplit, TaskAttemptContext context)
throws IOException, InterruptedException {
this.fileSplit = (FileSplit) inputSplit;
this.conf = context.getConfiguration();
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!processed) {
byte[] contents = new byte[(int) fileSplit.getLength()];
Path file = fileSplit.getPath();
FileSystem fs = file.getFileSystem(conf);
FSDataInputStream in = null;
try {
in = fs.open(file);
IOUtils.readFully(in, contents, 0, contents.length);
value.set(contents, 0, contents.length);
} finally {
IOUtils.closeStream(in);
}
processed = true;
return true;
}
return false;
}
@Override
public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
}
@Override
public BytesWritable getCurrentValue() throws IOException, InterruptedException {
return value;
}
@Override
public float getProgress() throws IOException, InterruptedException {
return processed ? 1.0f : 0.0f;
}
@Override
public void close() throws IOException {
}
}
其中有3个核心方法:nextKeyValue、getCurrentKey、getCurrentValue。
nextKeyValue负责生成要传递给map方法的key和value。getCurrentKey、getCurrentValue是实际获取key和value的。所以RecordReader的核心机制就是:通过nextKeyValue生成key value,然后通过getCurrentKey和getCurrentValue来返回上面构造好的key value。这里的nextKeyValue负责把整个文件内容作为value。
MapReduce程序:
package com.ice.hadoop.test.mergefile;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
/**
* @author:ice
* @Date: 2019/2/22 0022
*/
public class ManyToOne {
static class FileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
private Text fileNameKey;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
InputSplit split = context.getInputSplit();
Path path = ((FileSplit) split).getPath();
fileNameKey = new Text(path.toString());
}
@Override
protected void map(NullWritable key, BytesWritable value, Context context)
throws IOException, InterruptedException {
context.write(fileNameKey, value);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(ManyToOne.class);
job.setInputFormatClass(MyInputFormat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
job.setMapperClass(FileMapper.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
以上是关于MapReduce实例的主要内容,如果未能解决你的问题,请参考以下文章