caffe中train过程的train数据集val数据集test时候的test数据集区别

Posted laowangxieboke

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe中train过程的train数据集val数据集test时候的test数据集区别相关的知识,希望对你有一定的参考价值。

val是validation的简称。
training dataset 和 validation dataset都是在训练的时候起作用。
而因为validation的数据集和training没有交集,所以这部分数据对最终训练出的模型没有贡献。
validation的主要作用是来验证是否过拟合、以及用来调节训练参数等。
 
比如你训练0-10000次迭代过程中,train和validation的loss都是不断降低,
但是从10000-20000过程中train loss不断降低, validation的loss不降反升。
那么就证明继续训练下去,模型只是对training dataset这部分拟合的特别好,但是泛化能力很差。
所以与其选取20000次的结果,不如选择10000次的结果。
这个过程的名字叫做 Early Stop, validation数据在此过程中必不可少。
 
如果你去跑caffe自带的训练demo,你会用到train_val.prototxt,这里面的val其实就是validation。
而网络输入的TEST层,其实就是validation,而不是test。你可以通过观察validation的loss和train的loss定下你需要的模型。

但是为什么现在很多人都不用validation了呢?
我的理解是现在模型中防止过拟合的机制已经比较完善了,DropoutBN等做的很好了。
而且很多时候大家都用原来的模型进行fine tune,也比从头开始更难过拟合。
所以大家一般都定一个训练迭代次数,直接取最后的模型来测试。


















以上是关于caffe中train过程的train数据集val数据集test时候的test数据集区别的主要内容,如果未能解决你的问题,请参考以下文章

caffe 图片数据的转换成lmdb和数据集均值(转)

浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

如何利用Caffe训练ImageNet分类网络

训练与测试自己的图片

Caffe详解lenet_train_test.prototxt的网络结构

20170321-train-use-caffe