Elasticsearch聚合分析
Posted fmgao-technology
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch聚合分析相关的知识,希望对你有一定的参考价值。
预先设置
在进行聚合分析的是皇后首先把文本的field的fielddata属性设置为true
PUT /ecommerce/_mapping/product { "properties": { "tags": { "type": "text", "fielddata": true } } }
计算每个tag下的商品数量
GET /ecommerce/product/_search { "aggs": { "group_by_tags": { "terms": { "field": "tags" } } } }
结果
{ "took": 11, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 3, "max_score": 1, "hits": [ ...... "aggregations": { "group_by_tags": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "fangzhu", "doc_count": 2 }, { "key": "meibai", "doc_count": 1 }, { "key": "qingxin", "doc_count": 1 } ] } } }
包含yagao的商品,计算每个tag下的商品数量
GET /ecommerce/product/_search { "size": 0, "query": { "match": { "name": "yagao" } }, "aggs": { "all_tags": { "terms": { "field": "tags" } } } }
先分组,再算每组的平均值,计算每个tag下的商品的平均价格
GET /ecommerce/product/_search { "size": 0, "aggs" : { "group_by_tags" : { "terms" : { "field" : "tags" }, "aggs" : { "avg_price" : { "avg" : { "field" : "price" } } } } } }
结果
{ "took": 22, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 3, "max_score": 0, "hits": [] }, "aggregations": { "group_by_tags": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "fangzhu", "doc_count": 2, "avg_price": { "value": 27.5 } }, { "key": "meibai", "doc_count": 1, "avg_price": { "value": 30 } }, { "key": "qingxin", "doc_count": 1, "avg_price": { "value": 40 } } ] } } }
计算每个tag下的商品的平均价格,并且按照平均价格降序排序
GET /ecommerce/product/_search { "size": 0, "aggs" : { "all_tags" : { "terms" : { "field" : "tags", "order": { "avg_price": "desc" } }, "aggs" : { "avg_price" : { "avg" : { "field" : "price" } } } } } }
结果
{ "took": 26, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 3, "max_score": 0, "hits": [] }, "aggregations": { "all_tags": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "qingxin", "doc_count": 1, "avg_price": { "value": 40 } }, { "key": "meibai", "doc_count": 1, "avg_price": { "value": 30 } }, { "key": "fangzhu", "doc_count": 2, "avg_price": { "value": 27.5 } } ] } } }
按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格
GET /ecommerce/product/_search { "size": 0, "aggs": { "group_by_price": { "range": { "field": "price", "ranges": [ { "from": 0, "to": 20 }, { "from": 20, "to": 40 }, { "from": 40, "to": 50 } ] }, "aggs": { "group_by_tags": { "terms": { "field": "tags" }, "aggs": { "average_price": { "avg": { "field": "price" } } } } } } } }
以上是关于Elasticsearch聚合分析的主要内容,如果未能解决你的问题,请参考以下文章