GBDT原理学习

Posted kjkj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GBDT原理学习相关的知识,希望对你有一定的参考价值。

首先推荐 刘建平 的博客学习算法原理推导,这位老师的讲解都很详细,不过GBDT的原理讲解我没看明白,

而是1、先看的https://blog.csdn.net/zpalyq110/article/details/79527653这篇博客,用实例让读者对该算法有一个清晰的了解;

2、接着是刘建平老师 https://www.cnblogs.com/pinard/p/6140514.html 的文章,其实目前我看着还是有点晦涩,但是可以之后相互参考看

3、在刘建平老师的评论中 还看到了https://www.zhihu.com/question/54626685?from   用户Frankenstein 的回答也很精湛

可以参照上述链接依次学习。

不过GBDT与其他算法不同的一点在于没有那么多的理论推导,主要是将CART回归树与负梯度 的结合。通过CART决策树对样本划分得到树结构,

每轮得到新的样本y值(平方损失为每轮之间的残差),每轮依次减少误差,最后达到最小误差。

 

以上是关于GBDT原理学习的主要内容,如果未能解决你的问题,请参考以下文章

关于GBDT算法XGBoost算法的基本原理概述

机器学习算法:Boosting集成原理和实现过程

GBDT 算法:原理篇

机器学习-集成学习GBDT

一文速学-GBDT模型算法原理以及实现+Python项目实战

从原理上来说,GBDT 和 SVM 哪个更强?为啥