POJ3696 The Luckiest Number

Posted songorz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ3696 The Luckiest Number相关的知识,希望对你有一定的参考价值。

Chinese people think of ‘8‘ as the lucky digit. Bob also likes digit ‘8‘. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit ‘8‘.

Input

The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.

Output

For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob‘s luckiest number. If Bob can‘t construct his luckiest number, print a zero.

Sample Input

8
11
16
0

Sample Output

Case 1: 1
Case 2: 2
Case 3: 0

题解:这种题目一般都是 转化为: num*(10^x-1)/9= L*k

8*(10^x-1)=9L*k

设 d=gcd(9L,8)=gcd(8,L)

p=8/d,q=9L/d;

则: p*(10^x-1) q*k;

因为q,p互质,则q|(10^x-1) ,p|k

则     10^x-1=0(mod q)

10^x =1(mod q)

10^x=1(mod 9L/d)

当q与10互质时10^(oula(q))=1(mod  q)

因此,字需要枚举其因子即可;
参考代码:

技术图片
 1 #include<cstdio>
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 using namespace std;
 6 #define clr(a,val) memset(a,val,sizeof(a))
 7 typedef long long ll;
 8 const int INF=0x3f3f3f3f; 
 9 ll L,fac[1010]={0};
10 inline ll phi(ll x)
11 {
12     ll p=x,s=x;
13     for(ll i=2;i*i<=s;++i)
14         if(!(x%i))
15         {
16             p=p/i*(i-1);
17             while(!(x%i)) x/=i;
18         }
19     if(x>1) p=p/x*(x-1);
20     return p;
21 }
22 
23 inline void find_factor(ll x)
24 {
25     ll s=x;
26     fac[0]=0;
27     for(ll i=2;i*i<=s;++i)
28         if(!(x%i))
29         {
30             fac[++fac[0]]=i;
31             while(!(x%i)) x/=i;
32         } 
33     if(x>1) fac[++fac[0]]=x;
34 }
35 
36 inline ll mult(ll a,ll b,ll mod)
37 {
38     a%=mod; b%=mod;
39     ll s=a,sum=0;
40     while(b)
41     {
42         if(b&1)
43         {
44             sum+=s;
45             if(sum>=mod) sum-=mod;
46         }
47         b>>=1;s<<=1;
48         if(s>=mod) s-=mod;
49     }
50     return sum;
51 }
52 ll power(ll a,ll b,ll mod)
53 {
54     ll s=a,sum=1;
55     while(b)
56     {
57         if(b&1) sum=mult(sum,s,mod);
58         b>>=1;s=mult(s,s,mod);
59     }
60     return sum;
61 }
62 ll gcd(ll a,ll b) {return b==0? a:gcd(b,a%b);}
63 int main()
64 {
65     int t=0;
66     while(~scanf("%lld",&L) && L)
67     {
68         ++t;
69         ll m=L/gcd(L,8)*9,p=phi(m),x=p;
70         if(gcd(m,10)!=1) {printf("Case %d: 0
",t);continue;}
71         find_factor(p);
72         for(int  i=1;i<=fac[0];++i)
73         {
74             while(1)
75             {
76                 x/=fac[i];
77                 if(power(10,x,m)!=1)
78                 {
79                     x*=fac[i];
80                     break;
81                 }
82                 else if(x%fac[i]) break;
83             }
84         }
85         printf("Case %d: %lld
",t,x);
86     }
87     return 0;
88 } 
View Code

 

以上是关于POJ3696 The Luckiest Number的主要内容,如果未能解决你的问题,请参考以下文章

[POJ3696]The Luckiest number

poj 3696 The Luckiest Number

POJ 3696 The Luckiest number

「POJ3696」The Luckiest number数论,欧拉函数

poj-3696 The Luckiest number

POJ_3696 The Luckiest number 欧拉定理+同余式+对取模的理解